
15-745, Spring 2013

Homework Assignment 1

Assigned: Thursday, January 17
Due: Thursday, January 31, 9:00AM

Welcome to the Spring 2013 edition of Optimizing Compilers (15-745). We will be using the
Low Level Virtual Machine (LLVM) Compiler infrastructure from University of Illinois Urbana-
Champaign (UIUC) for our programming assignments. While LLVM is currently supported on
a number of hardware platforms, we expect the assignments to be completed on x86 machines,
since that is where they will be graded. Although LLVM works quite well on both Mac OS X
and Windows, it is recommended that assignments be done in a Linux VM that we will provide.

The objective of this first assignment is to introduce you to LLVM and some ways that it could
be used to make your programs run faster. In particular, you will use LLVM to learn interesting
properties about your program and to perform local optimizations.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

All clarifications (if any) to this assignment will be posted on the class discussion board on
Piazza. Any revisions will be uploaded to the “assignments” page on the class web page.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15745-s13/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

1 Install VirtualBox and the 15-745 System Image

To keep you from having to build LLVM yourself and to ensure that all assignments are graded
in the same environment, we are distributing a system image for VirtualBox based on Ubuntu
10.04.4 LTS (Lucid Lynx, a Facilities-supported operating system). You must ensure that all of
your code works in this image, but you are of course not required to do all of your development
with it.

The VirtualBox software is available on several platforms from http://www.virtualbox.org.
We will use version 4.2.6. You may need to enable your machine’s virtualization extensions
in your BIOS setup (on some office machines, reboot, press F12 to get the boot menu, choose
System Setup, then Virtualization Support, then make sure that the box is checked).

Once you have VirtualBox installed, you can retrieve the virtual machine image from

/afs/cs.cmu.edu/academic/class/15745-s13/www/vm-images/15-745.ova

1

http://piazza.com
http://www.virtualbox.org

There is a checksum file in the same directory, 15-745.ova.sha1, that you may use
(sha1sum -c 15-745.ova.sha1) to verify that the image transferred correctly.

The machine name is s1315745; you may log in with username user and password user. LLVM
binaries are in /home/user/llvm/llvm-3.2.install (or LLVM ROOT) and source files are in
/home/user/llvm/llvm-3.2.src. LLVM ROOT/bin is also added to the PATH.

We built LLVM 3.2 in the following way:

mkdir ~/llvm/llvm-3.2.build ; cd ~/llvm/llvm-3.2.build

../llvm-3.2.src/configure --prefix=/home/user/llvm/llvm-3.2.install \

--enable-optimized=no --enable-assertions=yes \

--enable-debug-runtime=yes

make -j 4

make install

Moving files between the VM and your host machine is easy using VirtualBox. If you set up a
shared directory in the VirtualBox GUI (pointing somewhere on your local filesystem), you can
mount it inside the VM with:

mkdir /home/user/sharepath

sudo mount -t vboxsf sharename /home/user/sharepath

Peruse through the documentation at http://llvm.org/docs. The LLVM Programmer’s Man-
ual (http://llvm.org/docs/ProgrammersManual.html) and Writing an LLVM Pass Tutorial
(http://llvm.org/docs/WritingAnLLVMPass.html) are particularly useful.

2 Create a Pass

The source code for your LLVM passes do not need to be inside the LLVM source tree. The Make-
file rules below will help you build your passes regardless of where your source code is, as long as
the LLVM that you have built is in your PATH (i.e. export PATH=/path/to/LLVM:$PATH like
the VM is configured). Create a directory named FunctionInfo and copy FunctionInfo.cpp

(provided with the assignment) into the new directory. FunctionInfo.cpp contains a dummy
LLVM pass for analyzing the functions in a program. Currently it prints out “15-745 Function
Information Pass”. In the next section, you will extend FunctionInfo.cpp to print out more in-
teresting information. For now, we will use the dummy LLVM pass to demonstrate how to build
and run LLVM passes on programs. First, create a Makefile to build the FunctionInfo pass
as follows (these instructions assume that your passes are the only .cpp files in the directory.
Make sure that there are tabs on lines 6 and 8 below):

all: FunctionInfo.so

CXXFLAGS = -rdynamic $(shell llvm-config --cxxflags all) -g -O0

%.so: %.o

(CXX) -dylib -flat_namespace -shared $^ -o $@

clean:

rm -f *.o *~ *.so

2

http://llvm.org/docs
http://llvm.org/docs/ProgrammersManual.html
http://llvm.org/docs/WritingAnLLVMPass.html

int g;

int g_incr (int c)

{

g += c;

}

int loop (int a, int b, int c)

{

int i;

int ret = 0;

for (i = a; i < b; i++) {

g_incr (c);

}

return ret + g;

}

@g = common global i32 0, align 4

define i32 @g_incr(i32 %c) nounwind {

entry:

%0 = load i32* @g, align 4, !tbaa !0

%add = add nsw i32 %0, %c

store i32 %add, i32* @g, align 4, !tbaa !0

ret i32 undef

}

define i32 @loop(i32 %a, i32 %b, i32 %c) nounwind {

entry:

%cmp2 = icmp slt i32 %a, %b

%0 = load i32* @g, align 4, !tbaa !0

br i1 %cmp2, label %for.body.lr.ph, label %for.end

for.body.lr.ph: ; preds = %entry

%1 = sub i32 %b, %a

%2 = mul i32 %1, %c

%3 = add i32 %0, %2

store i32 %3, i32* @g, align 4

br label %for.end

for.end: ; preds = %for.body.lr.ph, %entry

%.lcssa = phi i32 [%3, %for.body.lr.ph], [%0, %entry]

ret i32 %.lcssa

}
(a) (b)

Figure 1: (a) A simple loop source code, and (b) its optimized LLVM bytecode.

3

(Note: you can also copy this code from ASSTDIR/FunctionInfo/Makefile.) Before moving
on, make sure you can make this dummy pass. Copy the loop.c source code (shown in Fig-
ure 1(a)) from ASSTDIR/FunctionInfo/loop.c into your local directory. Compile it to an
optimized LLVM bytecode object (loop.o) as follows:

clang -O -emit-llvm -c loop.c

(clang is the LLVM project’s frontend for the C language family.)

Inspect the generated bytecode using llvm-dis as follows:

llvm-dis loop.o

This will create a disassembly of the testcase named loop.o.ll that should look very similar to
Figure 1(b).

Now try running the dummy FunctionInfo pass on the bytecode using the opt command. Note
the use of the command line flag “-function-info” to enable this pass. (See if you can locate
the declaration of this flag in FunctionInfo.cpp). Note that you must provide the correct
path to FunctionInfo.so. You can use ”./” if they are in the same directory.

opt -load path/to/FunctionInfo.so -function-info loop.o -o out

If all goes well, “15745 Function Information Pass” should be printed to stderr.

3 Meet The Functions

Program analysis is an important prerequisite to applying correct optimizations: we want to
improve code, not break it. For example, before the optimizer can remove some piece of code to
make a program run faster, it must examine other parts of the program to determine whether
the code is truly redundant. A compiler pass is the standard mechanism for analyzing and
optimizing programs.

You will now extend the dummy FunctionInfo pass from the previous section to learn in-
teresting properties about the functions in a program. Your pass should report the following
information about all functions that are used in a program:

1. Name.

2. Number of arguments (or * if variable).

3. Number of direct call sites in the same LLVM module (i.e. locations where this function
is called, ignoring function pointers).

4. Number of basic blocks.

5. Number of instructions.

To assist you in writing this pass, the expected output of running FunctionInfo on the optimized
bytecode (Figure 1(b)) is shown in Table 1. As you can see, the output in Table 1 is not

4

Name # Args # Calls # Blocks # Insns

g incr 1 0 1 4

loop 3 0 3 10

Table 1: Expected FunctionInfo output for the optimized bytecode of loop.c

interesting, since loop.c is a trivial piece of code. It is therefore recommended that you debug
your pass with more complex source files, as you can imagine grading will be done with complex
programs. Feel free to handin your additional testing source files in a separate directory together
with your source code.

You can debug your code with gdb as follows:

gdb --args opt -load ./FunctionInfo.so -function-info loop.o -o out

(...)

(gdb) b printFunctionInfo

Function "printFunctionInfo" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

(gdb) r

4 Optimize The Block (New Dragon Book 8.5)

Now that you are an expert writing LLVM passes, it is time to write a pass for making programs
faster. You will implement optimizations on basic blocks as discussed in class. More details on
local optimizations are available in Chapter 8.5 of the new Dragon book. While there are many
types of local optimizations, we will keep things quite simple in this section and focus only on the
algebraic optimizations discussed in Section 8.5.4 of the book. Specifically, you will implement
the following local optimizations:

1. Algebraic identities: e.g, x + 0 = 0 + x = x

2. Constant folding: e.g, 2 * 4 => 8

3. Strength reductions: e.g, 2 * x => (x + x) or (x << 1)

This is a somewhat open-ended question. Please handle at least the above cases, as well as one
more in each category that you come up with, for (scalar) integer types.

4.1 Implementation Details

You should create a new LLVM pass in a file named LocalOpts/LocalOpts.cpp following the
steps in Section 2. Provide an appropriate makefile at LocalOpts/Makefile. (Note that it is
possible to implement more than one pass in the same directory or file, but we’re trying to keep
things clean.) clang may apply these kinds of local optimizations during the course of regular
compilation. To better test your pass, you should build mostly unoptimized LLVM bytecode
from the test cases:

5

clang -O0 -emit-llvm -c loop.c

opt -mem2reg loop.o -o loop-m2r.o

You may assume that all input to your pass will first go through mem2reg as shown above.

We should be able to run your local optimization pass in the following way, modulo the location
of the shared library:

opt -load ./LocalOpts.so -some-local-opts loop-m2r.o -o out

In addition to transforming the bytecode, your pass should also print to standard out a summary
of the optimizations it performed. There is no canonical format for this output, but you should
at least try to categorize and count the transformations your pass applies:

Transformations applied:

Algebraic identities: 2

Constant folding: 1

Strength reduction: 3

We will provide toy source files with unrealistic amounts of local optimization opportunities for
you to debug your pass in: ASSTDIR/LocalOpts/test-inputs. In addition to using these test
inputs, we recommend that you test your pass on more realistic programs.

6

5 Questions

5.1 CFG Basics

For the code provided below (i) find basic blocks (ii) build the CFG (Control Flow Graph). Be
sure to give your basic blocks clear labels (and label the original code to match).

x = 100

y = 0

goto L2

L1: y = x * y

if (x < 50) goto L2

y = x - y

goto L3

L2: y = x + y

L3: print(y)

if (y < 1000) goto L1

switch (x) { 0 => L6 | 1 => L4 | 101 => L7 | default => L5 }

L4: print("!")

L5: x = x - 1

goto L1

L6: return y

L7: goto L7

5.2 Available Expressions, New Dragon Book 9.2.6

An expression x op y is available at a point p if every path from the entry node to p evaluates
x op y, and after the last such evaluation prior to reaching p, there are no subsequent assignments
to x or y. For the available-expressions data-flow schema we say that a block kills expression
x op y if it assigns (or may assign) x or y and does not subsequently recompute x op y. A block
generates expression x op y if it definitely evaluates x op y and does not subsequently define x
or y.
Based on this definition and the corresponding data flow analysis description(See Table 2 from
New Dragon Book 9.2.7) perform Available Expressions analysis on the code in Figure 2.

Domain Direction Transfer Function Boundary

Sets of expressions Forwards genB ∪ (x− killB) OUT [entry] = �
Meet ∧ Equations Equations Initialize

∩ OUT [B] = fB(IN [B]) IN [B] =
∧

P,pred(B)OUT [P] OUT [B] = U

Table 2: Available Expressions Analysis.

In the following tables, list the EVAL and KILL sets, then the final IN and OUT sets after AE
is performed. You may ignore expressions inside conditional statements (e.g., (z < c)).

7

�����

�

����	�
��
��������
��������
�����

����

�

	����
����	�
��
������
��
��������

�
�����

��������
�

����	�
��
��������

�
������
��
����������

Figure 2: Code for Available Expressions Analysis.

BB EVAL KILL

1

2

3

4

5

BB IN OUT

1

2

3

4

5

8

5.3 New Dataflow Analysis: Use-Without-Def

You have been hired to help develop a software analysis package that will detect bugs and errors
in programs. In particular, your job is to design a dataflow analysis pass specifically for finding
use-without-def errors (a use of a variable without it being previously defined). Your analysis
should be as simple as possible (i.e., it should not gather unnecessary information), and as fast
as possible. Your analysis will be plugged into a generic dataflow framework (e.g., New Dragon
Book 9.2-9.3).

1. What is the set of elements that your analysis operates on?

2. What is the direction of your analysis?

3. What is your transfer function? Be sure to clearly define any other sets that your transfer
function uses (eg., GEN or KILL etc).

4. What is your meet operator? Give the equation that uses the meet operator.

5. To what value do you initialize exit and/or entry?

6. To what values do you initialize the in or out sets?

7. Does the order that your analysis visits basic blocks matter? What order would you
implement and why?

8. Will your analysis converge? Why (in words, not a proof)?

9

9. Clearly describe in pseudo-code an algorithm that uses the result of your analysis to
identify use-without-def errors

10

6 Hand In

Hard-copy submission:

1. A report that briefly describes the implementations of both passes.

2. A listing of your source code. One possible way to generate this is by using enscript:

enscript -q -DDuplex:true -r -2 -E -fCourier7 --tabsize=2 -p listing.ps

ps2pdf listing.ps listing.pdf

3. Listings of additional tests that you used for verification of your passes, as well as
their expected results.

4. Answers to the questions in Section 5.

Electronic submission:

• A PDF of your writeup report and answers to the questions, named writeup.pdf.

• The source code for your passes (FunctionInfo and LocalOpts), the associated
Makefiles, and a README describing how to build and run them (especially if you
for some reason diverge significantly from what the assignment requires). Place all
of these files in a directory with the same name as the Andrew ID of one of your
group members. Archive this directory and name the file with the same Andrew ID
(bovik.tar.gz):

tar czvf bovik.tar.gz bovik

When the file is extracted with tar xf, we expect to see these required files in these
locations:

./bovik/README

./bovik/FunctionInfo/FunctionInfo.cpp

./bovik/FunctionInfo/Makefile

./bovik/LocalOpts/LocalOpts.cpp

./bovik/LocalOpts/Makefile

./bovik/writeup.pdf

It is fine if there are other files included; please also include any additional tests you
used for verification.

Copy the tar.gz file into the directory

/afs/cs.cmu.edu/academic/class/15745-s13/public/asst/asst1/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Please don’t forget to comment your code.

11

	Install VirtualBox and the 15-745 System Image
	Create a Pass
	Meet The Functions
	Optimize The Block (New Dragon Book 8.5)
	Implementation Details

	Questions
	CFG Basics
	Available Expressions, New Dragon Book 9.2.6
	New Dataflow Analysis: Use-Without-Def

	Hand In

