Lecture 2

Local Optimizations

|. Basic blocks/Flow graphs
II. Abstraction 1: DAG

Ill. Abstraction 2: Value numbering

T Carnegic Metlon [N

Todd C. Mowry 15-745: Local Optimizations 1

|. Basic Blocks & Flow Graphs

e Whatis
* a basic block?
* aflow graph?

* How do we restructure a sequential list of instructions into a flow graph of basic
blocks?

« ALSU pp. 529-531
* Reachability of basic blocks

if x { bfls rl, 11
return; ret
jmp L2
} else { Ll:
} L2:

I Carnegic Metion [N

15-745: Local Optimizations 2 Todd C. Mowry

Il. Local Optimizations

e Common subexpression elimination
— array expressions
— field access in records
— access to parameters

I Carnegic Metlon [

15-745: Local Optimizations 3 Todd C. Mowry

-]
Graph Abstractions

 Example 1: an expression
a+a* (b-c)+ (b-c) *d

« ALSU pp. 359-362

I Carnegic Metlon [N

15-745: Local Optimizations 4 Todd C. Mowry

How well do DAGs hold up across statements?

e Example 2

a = b+c;
b = a-d;
c = b+c;
d = a-d;

I Carnegic Metlon [N

15-745: Local Optimizations 5 Todd C. Mowry

-
Critique of DAGs

* Cause of problems
— Assignment statements
— Value of variable depends on TIME

* How to fix problem?
— build graph in order of execution
— attach variable name to latest value

* Final graph created is not very interesting
— Key: variable->value mapping across time
— loses appeal of abstraction

I Carnegic Metlon [N

15-745: Local Optimizations 6 Todd C. Mowry

l1l. Value Number: Another Abstraction

e John Cocke & Jack Schwartz in unpublished book: “Programming Languages and
their Compilers”, (1970) (ALSU pp. 360-362)

* More explicit with respect to VALUES, and TIME

(static) (dynamic)
Variables Values
(current)
var2value

e each value has its own “number”
— common subexpression means same value number
* var2value: current map of variable to value
— used to determine the value number of current expression

rl +r2 => var2value(rl)+var2value(r2)

I Carnegic Metlon [N

15-745: Local Optimizations 7 Todd C. Mowry

Algorithm
Data structure:
VALUES = Table of
expression
var (temporary holding wvariable)

For each instruction (dst = op srcl src2) in execution order

IF [OP var2value(srcl) var2value(src2)] is in VALUES
v = the index of expression
Replace instruction with CPY dst = VALUES|[v] .var
ELSE

Add
expression = [OP var2value(srcl) var2value (src2)]
var = dst

to VALUES

v = index of new entry

set var2value (dst, v)

I Carnegic Metlon [N

15-745: Local Optimizations 8 Todd C. Mowry

More Details

 What are the initial values of the variables?
— values at beginning of the basic block

* Possible implementations:
— Initialization: create “initial values” for all variables
— Or dynamically create them as they are used

* Implementation of VALUES and var2value: hash tables

I Carnegic Metion [N

15-745: Local Optimizations 9 Todd C. Mowry

Example

Assign: a->rl,b->r2,c->r3,d->r4

a = b+c; ADD tl = r2,r3
CPY rl = t1l

b = a-d; SUB t2 = rl,r4
CPY r2 = t2

c = b+c; ADD t3 = r2,r3
CPY r3 = t3

d = a-d; SUB t4 = rl,r4
CPY r4 = t4

I Carnegic Metion [N

15-745: Local Optimizations 10 Todd C. Mowry

Conclusions

* Comparisons of two abstractions
— DAGs
— Value numbering

* Value numbering
— VALUE: distinguish between variables and VALUES

— TIME
* Interpretation of instructions in order of execution
* Keep dynamic state information

Y Carnegic Metlon [N

15-745: Local Optimizations 11 Todd C. Mowry

Question

* How do you extend value numbering to constant folding?

a=1
b 2
c = a+b

I Carnegic Metlon [N

15-745: Local Optimizations 12 Todd C. Mowry

