
CS 745, Spring 2015

Homework Assignment 2

Assigned: Thursday, January 29
Due: Thursday, February 12, 9:00AM

Introduction

In class, we discussed many interesting data flow analyses such as Liveness, Reaching Defini-
tions, and Available Expressions. Although these analyses are different in certain ways, for
example they compute different program properties and analyze the program in different direc-
tions (forwards, backwards), they share some common properties such as iterative algorithms,
transfer functions, and meet operators. These commonalities make it worthwhile to write a
generic framework that can be parameterized appropriately for solving a specific data flow
analysis. In this assignment, you and your partner will implement such an iterative data flow
analysis framework in LLVM, and use it to implement a forward data flow analysis (Available
Expressions) and a backward data flow analysis (Liveness). Although Liveness and Available
Expressions implementations are available in some form in LLVM, they are not of the iterative
flavor. The objective of this assignment is to create a generic framework for solving iterative bit-
vector dataflow analysis problems, and use it to implement Liveness and Available Expressions
analysis.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on Piazza.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15745-s15/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst2.

1 Iterative Data Flow Analysis Framework

A well-written iterative data flow analysis framework significantly reduces the burden of imple-
menting new data flow passes; the developer only writes pass specific details such as the meet
operator, transfer function, analysis direction, etc. In particular, the framework should solve
any unidirectional data flow analysis as long as the analysis supplies the following:

1. Domain, including the semi-lattice
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2. Direction (forwards or backwards)

3. Transfer function

4. Meet operation

5. Boundary condition

6. Initial interior points (Top)

To simplify the design process, the domain of values can be represented as bit vectors so that
the semi-lattice and set operations (union, intersection) are easy to implement. You are not
required to use bit vectors, but doing so is recommended. Careful thought should be given
to how the analysis parameters are represented. For example, direction could reasonably be
represented as a boolean, while function pointers may seem more appropriate for representing
transfer functions.

It will be worth your while to do a good job on this assignment because you will
be reusing this framework in Assignment 3.

2 Data Flow Analyses

You will now use your iterative data flow analysis framework to implement Liveness and Avail-
able Expressions. As explained below in more detail, each analysis should perform computation
at program points. As defined in class, program points are assumed to lie between instructions
(not in the middle of instructions). Please assume that mem2reg pass is always run on code your
passes receive.

Liveness Upon convergence, your Liveness pass should report all variables that are “live” at
each program point. A useful debugging strategy might be to use results of the LLVM Liveness
pass as a reference. Please call this pass “liveness”.

For this assignment, we will only track the liveness of instruction-defined values and function
arguments. That is, when determining what values are used by an instruction, you will use code
like this:

User::op_iterator OI, OE;

for (OI = insn->op_begin(), OE = insn->op_end(); OI != OE; ++OI)

{

Value *val = *OI;

if (isa<Instruction>(val) || isa<Argument>(val)) {

// val is used by insn

}

}

You should carefully consider how your analysis passes are affected by φ instructions. For
example, your passes should not output results for the program point preceding a phi instruction
since they are pseudo instructions which will not appear in the executable. To guide you in
formatting the output of your passes, the expected output of running Liveness analysis on the
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int sum (int a, int b)!
{!
 int i;!
 int res = 1;!

 for (i = a; i < b; i++) !
 {!
    res *= i;!
 }!
 return res;!
}!

(a)!

define i32 @sum(i32 %a, i32 %b) nounwind readnone ssp {!
entry:!
  %0 = icmp slt i32 %a, %b!
  br i1 %0, label %bb.nph, label %bb2!

bb.nph: ; preds = %entry!
  %tmp = sub i32 %b, %a!
  br label %bb!

bb:     ; preds = %bb, %bb.nph!
  %indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb ]!
  %res.05 = phi i32 [ 1, %bb.nph ], [ %1, %bb ]!
  %i.04 = add i32 %indvar, %a!
  %1 = mul nsw i32 %res.05, %i.04!
  %indvar.next = add i32 %indvar, 1!
  %exitcond = icmp eq i32 %indvar.next, %tmp!
  br i1 %exitcond, label %bb2, label %bb!

bb2:    ; preds = %bb, %entry!
  %res.0.lcssa = phi i32 [ 1, %entry ], [ %1, %bb ]!
  ret i32 %res.0.lcssa!

(b)!

Figure 1: (a) Simple loop code, and (b) corresponding optimized (-O) LLVM bytecode.

bytecode from Figure 1(b) is shown in Table 1. Note that you do not need to match the output
exactly in terms of commas, spacing, etc.

The fact that you will be working on code in SSA form means that computed values are never
destroyed. This will have ramifications for how your passes are implemented. Think carefully
about what this means to your implementation.

Available Expressions Upon convergence, your Available Expressions pass should report all
the binary expressions that are “available” each program point. Please call this pass “available”.

Please note the following details and simplifications:

• For this assignment, we are only concerned with expressions represented by an instance of
BinaryOperator. Analyzing comparison instructions and unary instructions (e.g., nega-
tion) is not required. See the example output in Table 2.

• We will consider two expressions equal if the instructions that calculate these expression
share the same opcode, first operand, and second operand. To make reasoning about
equivalent expressions easier, we have provided an Expression class that performs some
of the comparison (and pretty printing) logic for you.

Side note about comparisons in LLVM: LLVM works hard to make sure that you can
compare pointers (say two Value *s) with the expected results. Unless you do additional
work, however, you will not be able to compare two Expression pointers. You can,
however, compare the Expression objects themselves.

• Do not worry about commutative expressions. You may, for example, consider x+y and
y+x to be separate expressions.
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define i32 @sum(i32 %a, i32 %b) nounwind readnone ssp {
entry:

{%a,%b}
%0 = icmp slt i32 %a, %b

{%a,%b,%0}
br i1 %0, label %bb.nph, label %bb2
bb.nph: ; preds = %entry

{%a,%b}
%tmp = sub i32 %b, %a

{%a,%tmp}
br label %bb
bb: ; preds = %bb, %bb.nph
%indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb ]
%res.05 = phi i32 [ 1, %bb.nph ], [ %1, %bb ]

{%a,%tmp,%indvar,%res.05}
%i.04 = add i32 %indvar, %a

{%a,%tmp,%indvar,%res.05,%i.04}
%1 = mul nsw i32 %res.05, %i.04

{%a,%tmp,%indvar,%1}
%indvar.next = add i32 %indvar, 1

{%a,%tmp,%1,%indvar.next}
%exitcond = icmp eq i32 %indvar.next, %tmp

{%a,%tmp,%1,%indvar.next,%exitcond}
br i1 %exitcond, label %bb2, label %bb
bb2: ; preds = %bb, %entry
%res.0.lcssa = phi i32 [ 1, %entry ], [ %1, %bb ]

{%res.0.lcssa}
ret i32 %res.0.lcssa

{}
}

Table 1: Output of Liveness on the bitcode in Figure 1(b).
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entry:
%add = add nsw i32 %argc, 50

{%argc+50}
%add1 = add nsw i32 %add, 96

{%argc+50, %add+96}
%cmp = icmp slt i32 50, %add

{%argc+50, %add+96}
br i1 %cmp, label %if.then, label %if.else

{%argc+50, %add+96}
if.then:
%sub = sub nsw i32 %add, 50

{%argc+50, %add+96, %add-50}
%mul = mul nsw i32 96, %add

{%argc+50, %add+96, %add-50, 96*%add}
br label %if.end

{%argc+50, %add+96, %add-50, 96*%add}
if.else:
%add2 = add nsw i32 %add, 50

{%argc+50, %add+96, %add+50}
%mul3 = mul nsw i32 96, %add

{%argc+50, %add+96, %add+50, 96*%add}
br label %if.end

{%argc+50, %add+96, %add+50, 96*%add}
if.end:
%f.0 = phi i32 [ %sub, %if.then ], [ %add2, %if.else ]
%sub4 = sub nsw i32 50, 96

{%argc+50, %add+96, %add+50, 50-96}
%add5 = add nsw i32 %sub4, %f.0

{%sub4+%f.0, %argc+50, %add+96, %add+50, 50-96}
ret i32 0

{%sub4+%f.0, %argc+50, %add+96, %add+50, 50-96}

Table 2: Output of Available Expressions on bitcode for source in Figure 2.
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int main(int argc, char * argv[]) {

int a,b,c,d,e,f;

a = 50;

b = argc+a;

c = 96;

e = b + c;

if (a < b) {

f = b-a;

d = c*b;

}

else {

f = b+a;

e = c*b;

}

b = a-c;

d = b+f;

return 0;

}

Figure 2: Source code for Available Expressions Example
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3 Questions

3.1 Lazy Code Motion

Suppose you were processing the program illustrated by the pseudo-code in Listing 1. Assume
that x, y, and z are initialized prior to the code reaching the first statement in the code, and are
not constants.

1. Build the CFG for this code, indicating which instructions from the original code will be
in each basic block. You may indicate the instructions using the line number for that line
of code in parentheses (for example (1) for “d=c+3” on the first line below). Also indicate
which expressions are anticipated on each edge, based upon the algorithm described in
class.

2. Show the CFG after the Early Placement pass. You may apply constant folding at this
time.

3. Show the CFG after the Lazy Code Motion and Cleanup passes.

All CFGs may be drawn either via a computer or by hand, but they must be legible in the
writeup.

1 d=c +3;
2 i f (b>5) {
3 a=a+d ;
4 c =4;
5 } e l s e {
6 b=b−9;
7 a=a+d ;
8 }
9 return a ;

Listing 1: Source code for question 3.1
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3.2 LICM: Loop Invariant Code Motion

For the following code, clearly (i) list the loop invariant instructions, and (ii) clearly indicate
why each may or may not be moved to the pre-header by a loop invariant code motion pass.
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PART 2) [15]  Loop Invariant Code Motion 
 
For the following code, clearly (i)  list the loop invariant instructions, and (ii) clearly indicate 
why each may or may not be moved to the preheader by a loop-invariant code motion pass.  
You do not need to rewrite the final code. 
 
 

entry

z = z + 1
y = 5
q = 7
(z < 50)?

p = p – 1
g = 3
x = 1

print(g,m,n,p,q,x,y,z)

S1
S2
S3

y = 0
z = 4
p = 5

p = p + 2
g = 4
(z < 100)?

m = y + 7
n = g + 2
y = 7
r = q + 9 exit

S4
S5
S6

S7
S8

S9
S10
S11
S12

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Loop Invariant: s2,s3,s5,s6,s8,s9,s11,s12 
 
Dominates all uses: s2, s3 
 
Dominate exits: s2,s3 
 
Still only RD if moved: s3 
 
Hence move s3 

-5 For missing explanations

-3 For moving an immovable LI 
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4 Hand In

Electronic submission: The source code for your framework and passes, the associated
Makefiles, your test cases, and a README describing how to build and run them. Do this
by creating a tar file with the last name of at least one of your group members in the
filename, and copying this tar file into the directory

ASSTDIR/handin

Include as comments near the beginning of your source files the identities of all members
of your group. Also remember to do a good job of commenting your code.

Hard-copy submission:

1. A report that briefly describes the design and implementation of your framework and
passes, and how you tested it. In particular, describe the interface of your framework
clearly, so that someone else (e.g., the grader) could write a pass that will work with
it.

2. Your answers to the questions in part 3.

3. A listing of your source code.
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