
15-745, Spring 2015

Homework Assignment 3

Assigned: Thursday, February 12
Due: Thursday, March 5, 9:00AM

Introduction

In this assignment, you will write passes to improve code by eliminating redundant or unused
computation. To convince yourself of the benefits of your code transformations, you will measure
the resulting program speedups.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members. Turn in all of your work both electronically
and on paper.

Logistics

Any clarifications and revisions to the assignment will be posted on the “assignments” page on
the class web page.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15745-s15/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst3.

1 Profiling with LLVM

LLVM supports profiling in various ways. You could simply time your program over some number
of iterations, but your results would be highly dependent on your particular machines hardware
and software configuration; however, this requires no changes to be made to the program under
inspection.

Another way to estimate the performance of a program is to simply measure how many LLVM
instructions are dynamically executed when it runs. To do this, you can use lli, the LLVM
interpreter. Ordinarily the interpreter will try to JIT compile the bitcode passed to it, but you
can force it to take the slow path (while counting instructions):

clang -emit-llvm -O3 -o foo.o -c foo.c

lli -stats -force-interpreter foo.o

1

You should always get the same instruction count every time you run lli. This approach works
best with test programs that have a ‘main’ function. This is, of course, not a very good machine
model; for example, all instructions are assigned the same cost (even pseudo-instructions, like
getelementptr) and there is no notion of memory latency. As a first pass, though, it provides
a nice way to measure the effectiveness of your passes.

2 LICM: Loop Invariant Code Motion

In this pass, you will decrease the number of dynamic instructions executed during a loop by
identifying and hoisting out those that are loop-invariant.

For this problem, you may derive from LLVMs LoopPass class. You may also require and
use loop information from the LoopInfo pass except for methods related to loop-invariance
(isLoopInvariant, hasLoopInvariantOperands, makeLoopInvariant, etc.). Finally, you
should rely on the LoopSimplify pass to insert loop preheaders where appropriate. (We will
run your pass in such a way that LoopSimplify executes before it.) If LoopSimplify is unable
to insert a preheader (eg, ((Loop*)foo)->getLoopPreheader() == NULL), you may ignore the
loop.

You must write your own code to calculate dominance information for this problem. For each
loop you process, print out the names and immediate dominators of the blocks belonging to the
loop (to standard error; names should come from BasicBlock::getName). For example:

for.cond idom entry

for.body idom for.cond

for.inc idom for.body

We will ensure that LoopSimplify runs before your LICM pass by running it with:

opt -load ./ClassicalDataflow/LoopInvariantCodeMotion.so -loop-simplify -licm

You are not required to use LoopPass for this assignment, but it is a reasonable idea to do so.

You may find your dataflow analysis framework to be useful for this subproblem, but you are not
required to use it. Next, for each loop, compute the set of loop-invariant Instructions. You may
ignore child nested loops that you have already processed, but you should ensure that deeply
nested loop- invariant computations can still bubble all the way out. Follow the guidelines from
the class notes, with these added stipulations for determining whether LLVM Instruction* I is
invariant:

isSafeToSpeculativelyExecute(I) &&

!I->mayReadFromMemory() &&

!isa<LandingPadInst>(I)

In your writeup, please describe why the first two checks are necessary.

Finally, hoist to the preheader all loop-invariant instructions that are candidates for code motion.
Be sure to preserve dependencies.

Your pass must be named licm and we must be able to run it with
opt -load ./ClassicalDataflow/LoopInvariantCodeMotion.so -loop-simplify -licm

Write at least three microbenchmarks and include in your submission a listing of the original
C source, the LLVM bitcode (after being transformed by mem2reg) with a dynamic instruction

2

count, and the transformed LLVM bitcode (put through your pass after being transformed by
mem2reg) with a dynamic instruction count.

2.1 Dead Code Elimination

In this pass, you will improve the output of your LICM pass by removing unused (“dead”)
instructions and preserving live ones. An Instruction* I is live if:

isa<TerminatorInst>(I) ||

isa<DbgInfoIntrinsic>(I) ||

isa<LandingPadInst>(I) ||

I->mayHaveSideEffects()

or if I is used by any Instruction that is also live. Compute the set of instructions to remove
or preserve, then use it to eliminate instructions appropriately. Use your dataflow analysis
framework to process sets of instructions simultaneously. (Note: you will need to include llvm
files to get all of the definitions you need for the above expression.) Your pass must be named
dce and we must be able to run it with:
opt -load ./ClassicalDataflow/DeadCodeElimination.so -dce

Write at least two microbenchmarks and include in your submission a listing of the original C
source, the LLVM bitcode (after being transformed by mem2reg) with a dynamic instruction
count, and the transformed LLVM bitcode (put through your pass after being transformed by
mem2reg) with a dynamic instruction count.

3

3 Questions

3.1 Register Allocation

Consider the following code, where only uses and defs of interest are shown:

entry

x =
y =

= x
s =

s =
= x

t =
= s

y =

= y
= t

exit

u =
t =

= x
= u

y =

= y
= s

x =
t =

Figure 1: Code for Register Allocation Question

Using the algorithms discussed in class (see class notes from Lecture 15), show how to go about
allocating registers using that algorithm. Show what data you are keeping track of after every
step. Assume you have four physical registers to work with.

3.2 Instruction Scheduling

Imagine that you had a processor with two independent arithmetic units and one load/store
unit. Adds and subtracts take 1 cycle, multiplies take 4 cycles, divides take 7 cycles, loads
take 3 cycles, and stores take 1 cycle to initiate. Assume that the processor can only issue two
instructions per cycle, and that each functional unit can accept one instruction per cycle.

1. Show how the forward list scheduling algorithm described in class would execute the code
in Listing 1 on the processor described above. Assume the priority mechanism described

4

in class and that ties will be broken by selecting the instruction that appeared first in the
regular program order1.

2. Repeat the previous exercise, this time using the reverse list scheduling algorithm described
in class.

For each, you should turn in a table, where each row represents a cycle, containing the number
of that cycle (starting with 0), what instructions are ready to execute, and what instruction will
be issued to each functional unit.

1 a = load A
2 b = load B
3 c = a+b
4 d = load D
5 e = b−a
6 f = a/d
7 s t o r e e , E
8 g = load G
9 h = e∗b

10 i = d∗d
11 j = g+i
12 s t o r e c , C
13 s t o r e h , H
14 s t o r e j , J
15 s t o r e f , F

Listing 1: Code for instruction scheduling

1For reverse list scheduling, this means that if A appears before B in the original program, then you should
select A to finish before B, even though this may make B appear before A when looking at your results in the
forward direction.

5

4 Hand In

Hard-copy submission:

1. A report that briefly describes the design and implementation of the code transfor-
mations, as well as your performance evaluation strategy.

2. A listing of your source code. You do not need to print out your source code or your
test cases. Your electronic copy will be the one that is graded.

3. A set of tests/benchmarks (including the source code) that you used to test your
passes, as well as the reasoning behind the design of your benchmarks.

4. A hard copy of the solutions for questions.

Electronic submission:

• A PDF of your writeup report and answers to the questions, named writeup.pdf.

• The source code for your code transformation passes, the associated Makefiles, and
a README describing how to build and run them (however, your directions should not
diverge drastically from what we have asked you to do). Place all of these files in
a directory with the same name as the Andrew ID of one of your group members.
Archive this directory with the same Andrew ID. For example, if your Andrew ID is
bovik, then you could archive it with tar czvf bovik.tar.gz bovik.

When the file is extracted with tar xvf, we expect to see these required files in these
locations.

./bovik/README

./bovik/LICM/Makefile

./bovik/writeup.pdf

./bovik/tests/[your tests here]

It is fine if there are other files included. Both the source code and the bitcode files
for your tests and benchmarks should be put in the tests folder. The instruction
count information should be included as part of your writeup PDF.

Note: You will not be able to modify or replace your submission once you put it in
the handin folder. If you need to update your submission, please add a new tgz file
with a version number at the end, such as bovik-v2.tar.gz.

ASSTDIR/handin

Include as comments near the beginning of your files the identities of all members of
your group. Please dont forget to comment your code.

6

