15-745: Optimizing Compilers for Modern Architectures

Lecture 1: Introduction

What would you get out of this course?
Structure of a Compiler
Optimization Example

Phillip B. Gibbons 15-745: Introduction 1

Course Logistics

e If you are on the waitlist, come see me after class
— This course is not intended to be your first compiler course

* Let Pratik know if can’t get on Piazza or Canvas for this course

Compilers
Principles, Techniques, & Tools

* Need to get the book (it

* Let’s run through the course webpage at http://www.cs.cmu.edu/~15745/

Carnegie Mellon -

15-745: Introduction 2 Phillip B. Gibbons

http://www.cs.cmu.edu/~15745/

-
What Do Compilers Do?

1. Translate one language into another
— e.g., convert C++ into x86 object code
— difficult for “natural” languages, but feasible for computer languages

2. Improve (i.e. “optimize”) the code

— e.g., make the code run 3 times faster
* or more energy efficient, more robust, etc.

— driving force behind modern processor design

15-745: Introduction 3

How Can the Compiler Improve Performance?

Execution time = Operation count * Machine cycles per operation

* Minimize the number of operations
— arithmetic operations, memory accesses
* Replace expensive operations with simpler ones
— e.g., replace 4-cycle multiplication with 1-cycle shift

. e .] Processor
e Minimize cache misses

— both data and instruction accesses cache
|

memory

* Perform work in parallel

— instruction scheduling within a thread
— parallel execution across multiple threads

More accurately, machine cycles per operation must account for instruction overlap

Carnegie Mellon -

15-745: Introduction 4

-
What Would You Get Out of This Course?

e Basic knowledge of existing compiler optimizations

* Hands-on experience in constructing optimizations within a fully functional
research compiler

e Basic principles and theory for the development of new optimizations

15-745: Introduction 5

lI. Structure of a Compiler

Source Code Intermediate Form Object Code
C X86
C+t .| Front Optimizer Back ARM
End End
Java SPARC

Verilog MIPS

* Optimizations are performed on an “intermediate form”

— similar to a generic RISC instruction set
* Allows easy portability to multiple source languages, target machines

Carnegie Mellon -

15-745: Introduction 6

Ingredients in a Compiler Optimization

* Formulate optimization problem

— lIdentify opportunities of optimization
* applicable across many programs
 affect key parts of the program (loops/recursions)
* amenable to “efficient enough” algorithm

* Representation

— Must abstract essential details relevant to optimization

Mathematical
f_ Programs — - Model N
: - raphs

static statements » abstraction | %ateices
dynamic executio integer programs

relations
generated code @ @ solutions
NG J o J

15-745: Introduction 7

Ingredients in a Compiler Optimization

* Formulate optimization problem

— lIdentify opportunities of optimization
* applicable across many programs
 affect key parts of the program (loops/recursions)
* amenable to “efficient enough” algorithm

* Representation

— Must abstract essential details relevant to optimization
e Analysis

— Detect when it is desirable and safe to apply transformation
* Code Transformation

 Experimental Evaluation (and repeat process)

15-745: Introduction 8

Representation: Instructions

* Three-address code
A :=Bop C
* LHS: name of variablee.g. x, A[t] (address of A+ contents of t)
* RHS: value

e Typical instructions
A :=BopC

A := unaryop B

A :=B

GOTO s

IF A relop B GOTO s
CALL £

RETURN

15-745: Introduction 9

l1l. Optimization Example: Bubblesort

e Bubblesort program that sorts an array A that is allocated in static storage:
— an element of A requires four bytes of a byte-addressed machine
— elements of A are numbered 1 through n (n is a variable)
— A[j]isinlocation &A+4* (§-1)

for (i = n-1; i > 1; i--) {
for (§J =1; j <= 1i; j++)
if (A[J] > A[j+1])
temp = A[]j];
A[3j] = A[j+1];
A[j+1l] = temp;

Translated (Pseudo) Code

i := n-1 t8 = j-1
L5: if i<l goto 1Ll t9 := 4*t8
j =1 temp := A[t9]
L4: if j>i goto L2 t10 := j+1
tl := j-1 tll:= t10-1
t2 := 4*tl tl2 := 4*tll
t3 := A[t2] ;A[F] tl3 := A[tl2]
t4 := j+1 tl4 = j-1
t5 = t4-1 tl5 := 4*tl4
t6 := 4*t5 A[tl5] := t13
t7 := A[te6] ;JA[F+1] tlé := j+1
if t3<=t7 goto L3 tl7 := tleé6-1

tl1l8 := 4*tl7
A[tl8] :=temp

for (i = n-1; i >=1; i--) { : .
L3: j := j+1

for (j = 1; j <= i; j++)

if (A[3] > A[J+1]) { goto L
_ - q L2: i := i-1
temp = A[]j];
goto L5

A[j] = A[Jj+1];

A[j+1] = temp; Li:

;temp:=A[7]

JA[j+1]

;A[j]:=A[j+1]

;A[Jj+1] :=temp

Instructions
29 in outer loop
25 in inner loop

} I c-resie velon [

Representation: a Basic Block

e Basic block = a sequence of 3-address statements

— only the first statement can be reached from outside the block
(no branches into middle of block)

— all the statements are executed consecutively if the first one is
(no branches out or halts except perhaps at end of block)

* We require basic blocks to be maximal

— they cannot be made larger without violating the conditions

e Optimizations within a basic block are local optimizations

15-745: Introduction 12

-
Find the Basic Blocks

L5
L4
tl = j-1 B5
t2 = 4*tl
t3 := A[t2] ;A[7j]
t4d = j+1
t5 = t4-1
t6 := 4*t5
t7 := A[t6] ;A[+1]
if t3<=t7 goto L3
L3:
Basic Block:
Only enter at first L2:
Only exit at last
L1

t8 := j-1 B6
t9 = 4*t8

temp := A[t9] ,temp:=A[7j]
tl10 := j+1

tll:= tl10-1

tl2 := 4*tll

t1l3 := A[tl1l2] ,A[j+1]

tl4 := j-1

tl5 := 4*tl4

A[tl5] := t13 ;A[j]:=A[j+1]
tle := j+1

tl7 := tl6-1

tl8 := 4*tl7

A[tl8]:=temp ,[A[j+1]:=temp
J = j+1 B7
goto L4

1 = 1-1 BS
goto L5

-
Flow Graphs

* Nodes: basic blocks

* Edges: B, -> Bj, iff B; can follow B, immediately in some execution
— Either first instruction of B; is target of a goto at end of B,
— Or, B, physically follows B; which does not end in an unconditional goto.

* The block led by first statement of the program is the start, or entry node.

15-745: Introduction 14

Example Flow Graph

i := n-1 Bl t8 := j-1 B6
L5: t9 := 4*t8
temp := A[t9] ,temp:=A[7]
L4: t10 := j+1
tl = j-1 B5 tll:= tl1l0-1
t2 := 4*tl tl2 := 4*tll
t3 := A[t2] ;A[TF] tl3 := A[tl2] ,A[j+1]
td := j+1 tld := j-1
t5 = t4-1 tl5 := 4*tl4
t6 := 4*t5 A[tl5] := t13 ;A[j]:=A[j+1]
t7 := A[t6] JA[j+1] tlée := j+1
if t3<=t7 goto L3 tl7 := tl1l6-1
tl8 := 4*tl7
A[tl8] :=temp A[j+1]:=temp
B1 L3:|j = j+1 B7
B2 goto L4
B4 B3 L2:[1 := 1-1 BS
B5 goto L5
B6 BS Ll:
B7

Example Flow Graph

i := n-1 Bl t8 := j-1 B6
L5: t9 := 4*t8
temp := A[t9] ,temp:=A[j]
tl = j-1 B5 tll:= t10-1
t2 := 4*tl tl2 := 4*tll
t3 := A[t2] ;A[TF] tl3 := A[tl2] ;A[j+1]
t4d = j+1 tl4 := j-1
t5 = t4-1 tl5 := 4*tl4
t6 := 4*t5 A[tl5] := t13 ;A[j]:=A[j+1]
t7 := A[t6] JA[j+1] tlée := j+1
if t3<=t7 goto L3 tl7 := tlé6-1
tl8 := 4*tl7
A[tl8] :=temp ,A[j+1]:=temp
v —
Bl L3:|j = j+1 B7
B2 goto 14
(84«33/ N 12: [T = 1-1 B3
e B;S/ . . s goto L5
\ .
B7

Sources of Optimizations

e Algorithm optimization

* Algebraic optimization
A := B+0 => A :

]
o

* Local optimizations
— within a basic block -- across instructions
* Global optimizations
— within a flow graph -- across basic blocks
e Interprocedural analysis
— within a program -- across procedures (flow graphs)

15-745: Introduction 17

Local Optimizations

* Analysis & transformation performed within a basic block
* No control flow information is considered

* Examples of local optimizations:

* local common subexpression elimination
analysis: same expression evaluated more than once in a block
transformation: replace with single calculation

* |ocal constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

* dead code elimination

15-745: Introduction 18

Local Optimization (Redundancy in Address Calculation)

i := n-1
L5: if i<l goto L1l
j :=1
L4: if j>i goto L2
tl := j-1 B5S
t2 = 4*tl
t3 := A[t2 ;A[F]

1= JA[j+1]
if t3<=t7 goto L3

L3:

L2:

t8 :=j-1

t9 := 4*t8
temp := A[t9]
t1l0 := j+1

tll:= t10-1
tl2 := 4*tl11
t13 := A[tl2]

tld := j-1
t15 := 4*tl4
A[tl15] := t13
tl6 := j+1

tl7 := tl1l6-1
tl8 := 4*tl7
A[tl1l8] :=temp
j = j+1
goto L4
i:=1i-1
goto L5

;temp:=A[7j]

;A[J+1]

JA[F] :=A[j+1]

;A[j+1] :=temp

Local Optimization Example

i := n-1
L5: if i<l goto L1l
j :=1
L4: if j>i goto L2
tl := j-1 B5
t2 = 4*tl

t3 := AitZi ;A[F]

t7 := A[t6] JA[j+1]
if t3<=t7 goto L3

L3:

L2:

t8 :=j-1

t9 := 4*t8
temp := A[t9]
t1l0 := j+1
tll:= t10-1
tl2 := 4*tll
tl3 := A[tl1l2]
tl4 = j-1
tl5 := 4*tl4
A[tl5] :=
tle := j+1
tl7 := tl1l6-1
tl8 := 4*tl7
A[tl1l8] :=temp
j = j+1
goto L4
i:=i-1
goto L5

;temp:=A[7j]

;A[J+1]

tl3 ;A[j]:=A[j+1]

;A[j+1] :=temp

Local Optimization Example

i := n-1 t8 :=3-1 B6
L5: if i<l goto L1l t9 := 4*t8

j =1 1= ;temp:=A[7]
L4: if j>i goto L2

tl := j-1

t2 = 4*tl

t3 := A[t2] ;A[F] ;A[j+1]

t6 := 4%*]

t7 := A[t6] ;A[F+1]

if t3<=t7 goto L3 ;JA[J]:=A[j+1]

;A[j+1] :=temp

After Local Optimization

i := n-1 t8 :=j-1 B6
L5: if i<l goto L1 t9 := 4*t8
j :=1 temp := A[t9] ,temp:=A[7j]

L4: if j>i goto L2
tl := j-1 tl3 := A[tl2] ,;A[j+1]
t2 := 4*tl H JA[§] :=A[j+1]
t3 = A[t2] ;A[T] A[tl2] :=temp ;JA[j+1] :=temp
t6 = 4*j L3: j := j+1
t7 := A[t6] ;JA[F+1] goto L4
if t3<=t7 goto L3 L2: i := i-1

goto L5
L1l:

Instructions
20 in outer loop
16 in inner loop

(Intraprocedural) Global Optimizations

* Global versions of local optimizations
— global common subexpression elimination
— global constant propagation
— dead code elimination

* Loop optimizations
— reduce code to be executed in each iteration
— code motion
— induction variable elimination

e Other control structures

— Code hoisting: eliminates copies of identical code on parallel paths in a flow
graph to reduce code size.

15-745: Introduction 23

Global (Across Basic Blocks) Optimization Example

i := n-1 (t8 :=j-1 \ B6
L5: if i<l goto L1 t9 = 4*t8

j :=1 temp := A[t9]|,temp:=A[7F]
L4: if j>i goto L2 tl2 := 4*j

tl := j-1 B5 t1l3 := A[tl2] |,A[j+1]

t2 = 4*tl ” A[t9] := t13 ;JA[F] :=A[F+1]

t3 = A[t2] ;A[F] EA[tlZ]:=temp/ ;A[j+1] :=temp

t6 = 4*j L3: j := j+1

t7 := A[t6] ;A[F+1] goto L4

if t3<=t7 goto L3 L2: i := i-1

goto L5
L1l:

After Global Subexpression Elimination

i := n-1 A[t2] := t7 | ;A[j]:=A[j+1] B
L5: if i<l goto L1 A[t6] := t3 ;A[j+1] :=o0ld A[]]

j :=1 L3: j := j+1
L4: if j>i goto L2 goto L4

tl := j-1 B5 L2: 1 :=i-1

t2 := 4*tl goto L5

t3 := A[t2] ;old Al[7] Ll:

t6 = 4%*j

t7 := A[t6] JA[j+1]

if t3<=t7 goto L3

Instructions
15 in outer loop
11 ininner loop

Induction Variable Elimination

* Intuitively

— Loop indices are induction variables
(counting iterations)

— Linear functions of the loop indices are also induction variables
(for accessing arrays)

e Analysis: detection of induction variable

* Optimizations
— strength reduction:
* replace multiplication by additions
— elimination of loop index:
* replace termination by tests on other induction variables

15-745: Introduction 26

Induction Variable Elimination Example

i := n-1
L5: if i<l goto L1
(5 := 1)
L4:| if j>i goto L2
tl = j-1
\t2 = 4*tl)

t3 = A[t2]
t6 = 4*j
t7 := A[t6]

if t3<=t7 goto L3
A[t2] := t7

A[t6] := t3

L3: j := j+1

goto L4

L2: i := i-1
goto L5

After Induction Variable Elimination

i := n-1
L5: if i<l goto L1
(5 := 1 h
L4:| if j>i goto L2
tl := j-1
\£2 := 4*tl Yy

t3 := A[t2]

t6 = 4*j

t7 := A[t6]

if t3<=t7 goto L3

A[t2] := t7

A[t6] := t3

L3: j := j+1
goto L4

L2: i = i-1
goto L5

Ll:

i := n-1

L5: if i<l goto L1
(t2 := 0 h
t6 := 4

L4:| t19 := 4*i
\1f t6>tl9 goto L2)
t3 := A[t2]
t7 := A[t6]
if t3<=t7 goto L3
A[t2] := t7
A[t6] := t3
L3: (t2 := t2+4
[tG 1= t6+4]
goto L4
L2: 1 :=i-1
goto L5

Instructions
15 in outer loop
10 in inner loop

Ll:

Loop Invariant Code Motion

e Analysis
— a computation is done within a loop and

— result of the computation is the same as long as we keep going around the
loop

* Transformation
— move the computation outside the loop

15-745: Introduction 29

Loop Invariant Code Motion Example

i := n-1 A[t2] := t7
L5: if i<1 goto L1 A[t6] := t3
t2 ;=0 B3 L3: t2 := t2+4
t6 := 4 t6 := t6+4
L4:| t19 := 4*3i B4 goto L4
if t6>tl1l9 goto L2 L2: i := i-1
“t3 := A[t2] goto L5
t7 := A[t6] Ll:

if t3<=t7 goto L3

i := n-1
L5: if i<l goto L1
t2 := 0 B3
t6 := 4
y N
t£19 := 4*j
B4

L4:| if t6>tl9 goto L2
A V.

t3 = A[t2]
t7 := A[t6]
if t3<=t7 goto L3

Final Code

A[t2] := t7
A[t6] := t3

L3: t2 := t2+4
t6 := t6+4
goto L4

L2: i := i-1
goto L5

L1:

Before Optimizations
29 in outer loop
25 in inner loop

After Optimizations
15 in outer loop
9 ininner loop

Machine Dependent Optimizations

e Register allocation

* Instruction scheduling

Memory hierarchy optimizations
e etc.

15-745: Introduction 32

-
Friday’s Class

e Pratik will present “LLVM Compiler: Getting Started”
— part1of 2 onLLVM

* Assignment 1 will be handed out

Reminder: Wait listed students see me now

15-745: Introduction 33 Phillip B. Gibbons

