
Carnegie Mellon

Lecture 10:

Lazy Code Motion

I. Mathematical concept: a cut set

II. Lazy Code Motion Algorithm

• Pass 1: Anticipated Expressions

• Pass 2: (Will be) Available Expressions

• Pass 3: Postponable Expressions

• Pass 4: Used Expressions

Phillip B. Gibbons 15745: Lazy Code Motion 1

ALSU 9.5.3-9.5.5

Carnegie Mellon

Review: Loop Invariant Code Motion

• Given an expression (b+c) inside a loop,

– does the value of b+c change inside the loop?

– is the code executed at least once?

15745: Lazy Code Motion 2

a = t

t = b + c

a = b + c a = b + c

b = read() a = b + c

exit

Can b + c can be moved to header?

yes:

no no

Carnegie Mellon

Review: Partial Redundancy Elimination

• Can we place calculations of b+c
such that no path re-executes the same expression?

• Partial Redundancy Elimination (PRE)

– subsumes:

• global common subexpression (full redundancy)

• loop invariant code motion (partial redundancy for loops)

15745: Lazy Code Motion 3

d = b + c

a = b + c t1 = b + c

d = t1

t1 = b + c

a = t1

Carnegie Mellon

I. Full Redundancy: A Cut Set in a Graph

• Full redundancy at p: expression a+b redundant on all paths

– a cut set: nodes that separate entry from p (there can be many cut sets)

– each node in a cut set contains a calculation of a+b

– a, b not redefined

15745: Lazy Code Motion 4

Key mathematical concept

… = a+b

entry

… = a+b

… = a+b… = a+b

a = …

b = …

cut set

p:

Carnegie Mellon

Partial Redundancy: Completing a Cut Set

• Partial redundancy at p: redundant on some but not all paths

– Add operations to create a cut set containing a+b

– Note: Moving operations up can eliminate redundancy

• Constraint on placement: no wasted operation

– a+b is “anticipated” at B if its value computed at B will be used along ALL
subsequent paths

– a, b not redefined, no branches that lead to exit without use

• Range where a+b is anticipated  Choice

15745: Lazy Code Motion 5

… = a+b

entry

… = a+b

… = a+b… = a+b

a = …

b = …

cut set

p:

Carnegie Mellon

Review: Where Can We Insert Computations?

• Safety: never introduce a new expression along any path.

– Insertion could introduce exception, change program behavior.

– Solution: insert expression only where it is anticipated, i.e., its value computed
at point p will be used along ALL subsequent paths

• Performance: never increase the # of computations on any path.

– Under simple model, guarantees program won’t get worse.

– Reality: might increase register lifetimes, add copies, lose.

15-745: Lazy Code Motion 6

a = b + c

d = b + c

Unsafe to insert
b+c here

Carnegie Mellon

Preparing the Flow Graph

• Definition: Critical edges

– source basic block has multiple successors

– destination basic block has multiple predecessors

• Modify the flow graph:

– Add a basic block for every edge that leads to a basic block with multiple
predecessors (not just on critical edges)

• How does this help the example?

– To keep algorithm simple: consider each statement as its own basic block and
restrict placement of instructions to the beginning of a basic block

15745: Lazy Code Motion 7

d = b + c

a = b + c

d = b + c

a = b + c

= b + c

Safe!

Carnegie Mellon

II. Lazy Code Motion Algorithm

• Pass 1: Anticipated Expressions

• Pass 2: (Will be) Available Expressions

• Pass 3: Postponable Expressions

• Pass 4: Used Expressions

15745: Lazy Code Motion 8

Big picture:

– First calculates the “earliest” set of blocks for insertion

• this maximizes redundancy elimination

• but may also result in long register lifetimes

– Then it calculates the “latest” set of blocks for insertion

• achieving the same amount of redundancy elimination as “earliest”

• but hopefully reducing the lifetime of the register holding the value of the expression

Carnegie Mellon

Pass 1: Anticipated Expressions

• Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated at the entry of b

• An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

• First approximation:

• place operations at the frontier of anticipation
(boundary between not anticipated and anticipated)

15745: Lazy Code Motion 9

This pass does most of the heavy lifting in eliminating redundancy

Anticipated Expressions

Domain Sets of expressions

Direction backward

Transfer Function fb(x) = EUseb  (x -EKillb)
EUse: used exp, EKill: exp killed

 

Boundary in[exit] = 

Initialization in[b] = {all expressions}

Carnegie Mellon

Example 1

• What is the result if we insert t = a + b at the frontier of anticipation?

15745: Lazy Code Motion 10

See the algorithm in action

z = a + b

y = a + b

x = a + b r = a + b a = 10

0

1

1 1

1 011

0

0

1

Synthetic Block
(5 others not shown)

IN[i] = EUse[i]  (OUT[i] - EKill[i])
Meet = 

Add BB for every edge to BB
with multiple predecessors

Where is a + b anticipated?

Carnegie Mellon

Example 2
(Loop Invariant Code)

• Was inserting a + b at the frontier of anticipation the right thing to do in this case?

– doesn’t eliminate redundancy within loop (why not?)

15745: Lazy Code Motion 11

x = a + b

0

0

0

0

1

1

1

1

0

1

1

a = 1

x = a + b

a = 1

Add BB for every edge to BB
with multiple predecessors

IN[i] = EUse[i]  (OUT[i] - EKill[i])
Meet = 

Where is a + b anticipated?

Carnegie Mellon

Example 3
(More Complex Loop)

• Where would we ideally like to insert “a+b” in this case?

• What happens if we insert at the frontier of anticipation?

15745: Lazy Code Motion 12

x = a+b

y = a+b

a = 10

x = a+b

y = a+b

a = 10

1

0

1

1 1

1

1

1 1

1

1

1

1

1

1

0

0

0

0

IN[i] = EUse[i]  (OUT[i] - EKill[i])
Meet = 

only in added block on left

insert in both yellow blocks

a + b

anticipated?

Carnegie Mellon

Example 4
(Variation on Previous Loop)

• Is there any opportunity to eliminate redundancy here?

15745: Lazy Code Motion 13

x = a+b

y = a+b

a = 0

x = a+b

y = a+b

a = 0

1

0

0

00

0 0

0

0

1

1

1

0

0

0

0

0

IN[i] = EUse[i]  (OUT[i] - EKill[i])
Meet = 

no: unsafe to insert in left added block (a+b not anticipated there)
(e.g. “a+b” could be “b/a” & orange block could be “if a > 0”)

(2 synthetic
blocks

not shown)

a + b

anticipated?

Carnegie Mellon

Pass 2: Place As Early As Possible

• First approximation: frontier between “not anticipated” & “anticipated”

• Complication: anticipation may oscillate

• Pretend we calculate expression e whenever it is anticipated

• e will be available at p if e has been “anticipated but not subsequently killed” on all
paths reaching p

15745: Lazy Code Motion 14

There is still some redundancy left!

a = 1

x = a+b

y = a+b

(will be) Available Expressions

Domain Sets of expressions

Direction forward

Transfer Function fb(x) = (Anticipated[b].in  x) - EKillb

 

Boundary out[entry] = 

Initialization out[b] = {all expressions}

0

0

1

1

Carnegie Mellon

Early Placement

• earliest(b)

– set of expressions added to block b under early placement

– calculated from results of first 2 passes

• Place expression at the earliest point anticipated and not already available

– earliest(b) = anticipated[b].in - available[b].in

• Algorithm

– For all basic block b, if x+y  earliest[b]

• at beginning of b:
create a new variable t
t = x+y,
replace every original x+y by t

15745: Lazy Code Motion 15

Result:
• Maximized redundancy elimination
• Placed as early as possible
• But: register lifetimes?

Carnegie Mellon

Pass 3: Postponable Expressions

• An expression e is postponable at a program point p if

– all paths leading to p have seen earliest placement of e but not a subsequent use

15745: Lazy Code Motion 16

Let’s be lazy without introducing redundancy

Postponable Expressions

Domain Sets of expressions

Direction forward

Transfer Function fb(x) = (earliest[b]  x) - EUseb

 

Boundary out[entry] = 

Initialization out[b] = {all expressions}

• Delay creating redundancy to reduce register pressure
x = b+c

y = b+c

b = 1
0

earliest
1

0

0

0

1

1

1latest

Carnegie Mellon

Example Illustrating “Postponable”

15745: Lazy Code Motion 17

b = 1

x = b + c

y = b + c

Entry

Exit

Anticipated.in (Ant)
Available.in (Av)
Postponable.in (P)

Ant: 1

Ant: 0

Ant: 1

Ant: 1

Ant: 1

Ant: 0

Ant: 1

Ant: 1

Ant: 1

Ant: 1Ant: 1

Av: 1

Av: 1

Av: 1

Av: 0

Av: 0

Av: 1

Av: 1

Av: 1

Av: 1Av: 1

Av: 0

Earliest
(Ant=1, Av=0)

P: 0

P: 0

P: 1

P: 0

P: 0

P: 1

P: 1

P: 1

P: 0P: 1

P: 0

P.out: 1

EUse = TRUE
(causes P.out = 0)

Ant.IN[i] = EUse[i]  (Ant.OUT[i]-EKill[i])
Avail.OUT[i] = (Ant.IN[i]  Avail.IN[i])-EKill[i]

Post.OUT[i] = (Earliest[i]  Post.IN[i])-EUse[i]

Carnegie Mellon

Latest: frontier at the end of “postponable” cut set

• latest[b] = (earliest[b]  postponable.in[b]) 

(EUseb (s  succ[b](earliest[s]  postponable.in[s])))

• OK to place expression: earliest or postponable

• Need to place at b if either

– used in b, or

– not OK to place in one of its successors

• Works because of pre-processing step (an empty block was introduced to an edge
if the destination has multiple predecessors)

• if b has a successor that cannot accept postponement,
b has only one successor

• The following does not exist:

15745: Lazy Code Motion

OK to place

OK to place not OK to place

18

Carnegie Mellon

Example Illustrating “Latest”

• latest[b] = (earliest[b]  postponable.in[b]) 

(EUseb  (s  succ[b](earliest[s]  postponable.in[s])))

15745: Lazy Code Motion 19

b = 1

x = b + c

y = b + c

Entry

Exit

Anticipated.in (Ant)
Available.in (Av)
Postponable.in (P)

Ant: 1

Ant: 0

Ant: 1

Ant: 1

Ant: 1

Ant: 0

Ant: 1

Ant: 1

Ant: 1

Ant: 1Ant: 1

Av: 1

Av: 1

Av: 1

Av: 0

Av: 0

Av: 1

Av: 1

Av: 1

Av: 1Av: 1

Av: 0

Earliest

P: 0

P: 0

P: 1

P: 0

P: 0

P: 1

P: 1

P: 1

P: 0P: 1

P: 0

P.out: 1

Latest

Carnegie Mellon

Pass 4: Used Expressions

• Eliminate temporary variable assignments unused beyond current block

• Compute: Used.out[b]: sets of used (live) expressions at exit of b.

15745: Lazy Code Motion 20

Finally… this is easy, it is like liveness (for expressions)

Used Expressions

Domain Sets of expressions

Direction backward

Transfer Function fb(x) = (EUse[b]  x) - latest[b]

 

Boundary in[exit] = 

Initialization in[b] = 

x = a + b

not used afterwards

Carnegie Mellon

Code Transformation

• For all basic blocks b,

if (x+y)  (latest[b]  used.out[b])

at beginning of b:

add new t = x+y

replace every original x+y by t

15745: Lazy Code Motion 21

Carnegie Mellon

4 Passes for Partial Redundancy Elimination

1. Safety: Cannot introduce operations not executed originally

– Pass 1 (backward): Anticipation: range of code motion

– Placing operations at the frontier of anticipation gets most of the redundancy

2. Squeezing the last drop of redundancy:
An anticipation frontier may cover a subsequent frontier

– Pass 2 (forward): Availability

– Earliest: anticipated, but not yet available

3. Push the cut set out -- as late as possible
To minimize register lifetimes

– Pass 3 (forward): Postponability: move it down provided it does not create
redundancy

– Latest: where it is used or the frontier of postponability

4. Cleaning up

– Pass 4 (backward): Remove unneeded temporary assignments

15745: Lazy Code Motion 22

Carnegie Mellon

Remarks

• Powerful algorithm

– Finds many forms of redundancy in one unified framework

• Illustrates the power of data flow

– Multiple data flow problems

15745: Lazy Code Motion 23

Carnegie Mellon

Today’s Class

• Static Single Assignment
– ALSU 6.2.4

15-745: Lazy Code Motion 24

Friday’s Class

I. Mathematical concept: a cut set

II. Lazy Code Motion Algorithm

• Pass 1: Anticipated Expressions

• Pass 2: (Will be) Available Expressions

• Pass 3: Postponable Expressions

• Pass 4: Used Expressions

