
Carnegie Mellon

15-745: Memory Hierarchy Optimizations Phillip B. Gibbons

Lecture 15:

Memory Hierarchy Optimizations

ALSU 7.4.2-7.4.3, 11.2-11.5.1

I. Caches: A Quick Review
II. Iteration Space & Loop Transformations
III. Types of Reuse



15-745: Memory Hierarchy Optimizations 2

Carnegie Mellon

I. Caches: A Quick Review

• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that will affect 
performance?



15-745: Memory Hierarchy Optimizations 3

Carnegie Mellon

Optimizing Cache Performance

• Things to enhance:

• temporal locality

• spatial locality

• Things to minimize:

• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?



15-745: Memory Hierarchy Optimizations 4

Carnegie Mellon

Two Things We Can Manipulate

• Time:

• When is an object accessed?

• Space:

• Where does an object exist in the address space?

How do we exploit these two levers?



15-745: Memory Hierarchy Optimizations 5

Carnegie Mellon

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?

• What information is needed?

• How do we know that this would be safe?



15-745: Memory Hierarchy Optimizations 6

Carnegie Mellon

Space: Changing Data Layout

• What do we know about an object’s location?

• scalars, structures, pointer-based data structures, arrays, code, etc.

• How can we tell what a better layout would be?

• how many can we create?

• To what extent can we safely alter the layout?



15-745: Memory Hierarchy Optimizations 7

Carnegie Mellon

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays



15-745: Memory Hierarchy Optimizations 8

Carnegie Mellon

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?

• If so, what can be done?

int x;

double y;

foo(int a){

int i;

…

x = a*i;

…

}



15-745: Memory Hierarchy Optimizations 9

Carnegie Mellon

Structures and Pointers

• What can we do here?

• within a node

• across nodes

• What limits the compiler’s ability to optimize here? 

struct {

int count;

double velocity;

double inertia;

struct node *neighbors[N];

} node;

Example: Can rearrange field order to improve cache performance



15-745: Memory Hierarchy Optimizations 10

Carnegie Mellon

Arrays / Matrices

• usually accessed within loops nests

• makes it easy to understand “time”

• what we know about array element addresses:

• start of array?

• relative position within array

double A[N][N], B[N][N];

…

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];



15-745: Memory Hierarchy Optimizations 11

Carnegie Mellon

II. Iteration Space and Loop Transformations

• each position represents an iteration (not an array element)

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j



15-745: Memory Hierarchy Optimizations 12

Carnegie Mellon

Visitation Order in Iteration Space

• Note: iteration space  data space

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j



15-745: Memory Hierarchy Optimizations 13

Carnegie Mellon

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

A B

Assume row major order, N large, 2 elements per cache line

Hit

Miss

i

j

i

j

Row major layout: A[0][0] A[0][1]…A[0][N-1]  A[1][0] A[1][1]…A[1][N-1]  A[2][0]…



15-745: Memory Hierarchy Optimizations 14

Carnegie Mellon

When Do Cache Misses Occur?

double A[2N-1][N]; 

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

Hit

Miss

i

j

Row major layout of A:
A[0][0] A[0][1]…A[0][N-1] A[1][0]…A[1][N-1]…A[2N-2][0]…A[2N-2][N-1]

Assume row major order, 2 elements per cache line

If N large then all misses.  What if N is small? see above



15-745: Memory Hierarchy Optimizations 15

Carnegie Mellon

Optimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:

• when do cache misses occur?

• use “locality analysis”

• can we change the order of the iterations (or possibly data layout) to 
produce better behavior?

• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct results?

• use “dependence analysis”



15-745: Memory Hierarchy Optimizations 16

Carnegie Mellon

Examples of Loop Transformations

• Loop Interchange

• Cache Blocking

• Skewing: iterate through iteration space in the loops at an angle

• Loop Reversal: execute iterations in a loop in reverse order

• …

(we will briefly discuss the first two;
see ALSU 11.7.8 for others)



15-745: Memory Hierarchy Optimizations 17

Carnegie Mellon

Loop Interchange

for i = 0 to N-1

for j = 0 to N-1

A[j][i] = i*j;

i

j

Hit

Miss

j

i

for j = 0 to N-1

for i = 0 to N-1

A[j][i] = i*j;

Assume row major order, N large, 4 elements per cache line



15-745: Memory Hierarchy Optimizations 18

Carnegie Mellon

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L

for i = 0 to N-1

for j = JJ to min(N-1,JJ+L-1) 

f(A[i],A[j]);

i

j

i

j

A[i] A[j]

i

j

i

j

A[i] A[j]

L elements
per cache line 



15-745: Memory Hierarchy Optimizations 19

Carnegie Mellon

Impact on Visitation Order in Iteration Space

i

j

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L

for i = 0 to N-1

for j = JJ to min(N-1,JJ+L-1) 

f(A[i],A[j]);

i

j



15-745: Memory Hierarchy Optimizations 20

Carnegie Mellon

Cache Blocking in Two Dimensions

• brings square sub-blocks of matrix “b” into the cache

• completely uses them up before moving on

• reduces the number of misses from 
𝑁3

𝐿
or 𝑁3 to only 

2𝑁3

𝐿 𝐶
(C=cache size, L=line size)

for i = 0 to N-1

for j = 0 to N-1

for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B

for KK = 0 to N-1 by B

for i = 0 to N-1

for j = JJ to min(N-1,JJ+B-1)

for k = KK to min(N-1,KK+B-1)

c[i,k] += a[i,j]*b[j,k];



15-745: Memory Hierarchy Optimizations 21

Carnegie Mellon

i

j

B[j+1][0]

i

j

B[j][0]

III. Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial TemporalTemporal

(assume row-major, 2 elements per cache line, N small)

(Self) (Group)
except for    

(Self)



15-745: Memory Hierarchy Optimizations 22

Carnegie Mellon

Predicting Cache Behavior through “Locality Analysis”

• Definitions:

• Reuse:

• accessing a location that has been accessed in the past

• Locality:

• accessing a location that is now found in the cache

• Key Insights

• Locality only occurs when there is reuse!

• BUT, reuse does not necessarily result in locality.

• why not?



15-745: Memory Hierarchy Optimizations 23

Carnegie Mellon

Steps in Locality Analysis

1. Find data reuse

• if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

• set of inner loops where the data accessed by an iteration is expected 
to fit within the cache

3. Find data locality:

• reuse  localized iteration space  locality

To be covered in a future lecture...



Carnegie Mellon

Today’s Class: Memory Hierarchy Optimizations

2415-745: Memory Hierarchy Optimizations

Monday’s Class

• Brian Railing, Guest Lecture on Compiler-based Instrumentation

I. Caches: A Quick Review
II. Iteration Space & Loop Transformations
III. Types of Reuse

At 3 pm Today

• Sign up for Discussion Topics & Slots


