Carnegie Mellon University

Compiler-based Instrumentation

Dr. Brian P. Railing

Carnegie Mellon University

Overview of Talk

m General Program Instrumentation
m Path Profiling

m Memory Tracing

m [ntegrated Instrumentation

m Results

Carnegie Mellon University

What is program instrumentation?

m We want to embed a second program
= (ode that is doing something that is not the original program

m All compilers should still generate valid code
= Sometimes the instrumentation gets to terminate the program

Carnegie Mellon University

Common Examples

m Execution - Path profiling
m Memory - Address tracing
m Validation — malloc/ free, bounds checking

Overview of Talk

General Program Instrumentation
Path Profiling

Memory Tracing

Integrated Instrumentation

Results

Carnegie Mellon University

Carnegie Mellon University

What is path profiling?

m Record the execution of the program
m Find hot paths

m Measure test coverage

Path Profiling

m Starting with a control flow graph
= What is the hot path(s)?

m How can we record this information?

= Block counts?

= Edge frequencies?

= Paths?

Path

ACDF
ACDEF

ABCDF
ABCDEF

ABDF
ABDEF

Protl Prof2

90
60
0

100
20
0

110
40
0
100
0
20

Carnegie Mellon University

Figures from Ball & Larus, “Efficient Path Profiling”

Carnegie Mellon University

Block identifiers

m Map every block “name” to an integer

Func (Module M)
foreach (F 1n M)
// Canonicalize LLVM Basic Blocks
foreach (B 1n F)

bbid++

Carnegie Mellon University

Path Profiling

m Given the CFG

= What are the possible paths?
= What edges distinguish paths?

count [r] ++

Figures from Ball & Larus, “Efficient Path Profiling”

Path Profiling (Probably)

m Suppose we recorded one path in CFG
= How likely does it represent a hot path?

Path

ACDF
ACDEF

ABCDF
ABCDEF

ABDF
ABDEF

Protl Prof2

90
60
0

100
20
0

110
40
0
100
0
20

Carnegie Mellon University

Figures from Ball & Larus, “Efficient Path Profiling”

10

Overview of Talk

General Program Instrumentation
Path Profiling

Memory Tracing

Integrated Instrumentation

Results

Carnegie Mellon University

11

Carnegie Mellon University

Memory Tracing

m Record every address accessed
= Asked to implement the instrumentation in cachelab

m Record the details of those accesses
= Type/size
= |oad/ store
= Value (?)

12

Carnegie Mellon University

Memory access in LLVM

%indvars.iv = phi 164 [%16, %.1lr.ph.us], [%indvars.iv.next, %17]

$1.01.

%18
%19
%20
321
%22
%23
324
%25
%26
327
%28
%29
%30

us = phi 132 [%6, %.lr.ph.us], [%32, %17]
getelementptr inbounds float, float* %9, i64 %indvars.iv
load float, float* %18, align 4, !'tbaa !5

getelementptr inbounds float, float* %10, 164 %indvars.iv
load float, float* %20, align 4, !'tbaa !5

getelementptr inbounds float, float* %11, 164 3indvars.iv
load float, float* %22, align 4, !'tbaa !5

getelementptr inbounds float, float* %12, 164 3indvars.iv
load float, float* %24, align 4, !'tbaa !5

getelementptr inbounds float, float* %13, 164 3indvars.iv
load float, float* %26, align 4, !'tbaa !5

getelementptr inbounds 132, i32* %14, 164 %indvars.iv
load 132, 132* %28, align 4, 'tbaa !l

tail call float @ Z19BlkSchlsEqEuroNoDivfffffif(float %19,

float %21, float %23, float %25, float %27, 132 %29, float undef)
331 = getelementptr inbounds float, float* %15, 164 $Sindvars.iv
store float %30, float* %31, align 4, 'tbaa !5

%32
%33

add nsw 132 %$1.01l.us, 1
icmp slt 132 %32, %7

gindvars.iv.next = add nsw 164 %indvars.iv, 1

br il %33, label %17, label %. crit edge.us

13

Carnegie Mellon University

Memory access in LLVM

%indvars.iv = phi 164 [%16, %.1lr.ph.us], [%indvars.iv.next, %17]
%1.01.us = phi 132 [%6, %.1lr.ph.us], [%32, %17]

%18 = getelementptr inbounds float, float* %9, 164 %indvars.iv

%19 = load float, float* %18, align 4, !'tbaa !5

14

Carnegie Mellon University

Memory access in LLVM

m 318 = getelementptr inbounds float,
float* %9, 164 %Sindwvars.iv

- %19 = load float, float* %18, align 4,
tbaa !5

Load / Store

, Address
Type/ size

15

Overview of Talk

General Program Instrumentation
Path Profiling

Memory Tracing

Integrated Instrumentation

Results

Carnegie Mellon University

16

Carnegie Mellon University

LLVM Instrumentation Design (Contech)

m Compile the source lanquage into LLVM IR

m Instrument each basic block

= Record its execution (i.e. control flow)
= Record memory operations
= Record other operations

17

Instrumentation Design

Pseudo Code Instrumentation

Instrumented x86 Assembly

Find position in buffer
Store BBID into buffer

Update position

St MEM O .. N-1 ~
ore -

I
—

M

\-

e

—

——

mov $fs:0xffffffffffffffe8, Srax
mov (%rax),

Carnegie Mellon University

thread —
local buffer

movl $0x14e00,0x18 (%rax, 1)
movg $0x51cfal,0x1b (%rax , 1)

lea (%rdx,%rl5,8),%rsi
mov %rsi,0x21 (%rax, 1) — |

addl $O0xOf, |

18

Carnegie Mellon University

Basic Block Instrumentation

m Prologue:

Buffer = ctGetBuffer()

Buffer Position = _ ctGetBufferPos ()
fence singlethread acquire

*Buffer Position = ctStoreBasicBlock (BBID, Buffer Position,Buffer)

m Body:

__ctStoreMemOp (Addr, Number, *Buffer Position)

m Epilogue:

New Pos

___ctStoreBasicBlockComplete (Number of MemOps,

Buffer Position, Buffer)
fence singlethread release

__ctCheckBufferSize (New Pos)

19

Carnegie Mellon University

Aggressive Inling

m Buffer = ctGetBuffer ()
mov sfs:0xffffffffffffffe8, Srax
m Buffer Position = ctGetBufferPos()

mov (3srax), secx

m fence singlethread acquire
// Compiler directive

m *Buffer Position = ctStoreBasicBlock (BBID, Buffer
Position, Buffer)

movl $0x14e00,0x18 (%rax, srcx, 1)
m ctStoreMemOp (Addr, Number, *Buffer Position)

movg $0x51cfal,0x1b (%rax, $rcx, 1)

20

Carnegie Mellon University

Research thesis

m Memory traffic from instrumentation dominates overheads
m Eachinstrumented thread generates 1T00MB/s — 1GB/s

m Basicblocks are 90+% of trace
= And each basic block event is mostly memory operations

21

Carnegie Mellon University

Control Flow Improvements

m Abasicblock event generates significant memory traffic

= 3loads
=)stores
= (-N Memory operations (currently 0.9 / block)

m Analyzing the CFG, memory traffic can be reduced

22

Carnegie Mellon University

Basic Block Instrumentation - Chained

m Prologue:

Buffer = ctGetBuffer()

Buffer Position = _ ctGetBufferPos ()
fence singlethread acquire

*Buffer Position = _ ctStoreBagicBlock (BBID, Buffer Position, Buffer)

m Body:

__ctStoreMemOp (Addr, Number, *Bufiffer Position)

m Epilogue:

New Pos

___ctStoreBasicBlockComglete (Number of MemOps,

Buffer Position, Buffer)
fence singlethread release

__ctCheckBufferSize (New Pos)

23

Carnegie Mellon University

Basic Block Instrumentation - Chained

m [f predecessor is unconditional, then path is known

m Prologue:

Buffer = ctGetBuffer()
Buffer Position = ct

fence singlethread acquire
*Buffer Position = _ ctStoreB

m Body:

ctStoreMemOp (Addr, Number, *Buffer Pdsition)

m Epilogue:
New Pos = ctStoreBasicBlockComplete (Number of MemOps,

Buffer Position, Buffer)
fence singlethread release

__ctCheckBufferSize (New Pos)

1cBlock (BBID, Buffer Position, Buffer)

24

Carnegie Mellon University

Basic Block Instrumentation - Chained

m [f predecessor is conditional, then path is knowable
%9 = icmp eq 132 %argc, 4

2dir9 = zext 11 %9 to 18, !'ContechInst '1

m Prologue:

Buffer = ctGetBuffer()
Buffer Position = ct

fence singlethread acquire
*Buffer Position = _ ctSto

m Body:

__ctStoreMemOp (Addr, Number, *Buffer

m Epilogue:

ctStorePathInfo (Predecessor Direction)

New Pos = __ctStoreBasicBlockComplete (Number of MemOps,

Buffer Position, Buffer)
fence singlethread release

___ctCheckBufferSize (New Pos)

icBlock (BBID, Buffer Position, Buffer)

sition)

25

Carnegie Mellon University

Path “Profiling”

m 20 years of research on efficiently recording paths

= No one has integrated memory addresses and synchronization
= And every reviewer wants to know why | am not using path profiling techniques

m Prototypes:
= Elide basic block IDs at convergence points
® (hain buffer loads / stores
= Store conditional direction information on branches

= TODO: Assign path IDs

26

Recording a Memory Operation

m What can a memory operation trace record

= |oad/Store
= Address
= Size /Type
= Value

Carnegie Mellon University

27

Carnegie Mellon University

Prior Static Analysis in Contech

m Basicblocks are consistent in memory operations

= |fwe record basic blocks, then load/store and size/type is unchanged on each execution
= Record the load/store and size/type once in basic block info table

m 64-bit Addresses are only 6 bytes

00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 06 07

28

Carnegie Mellon University

Current Static Analysis

m Notall addresses are required.

= Addresses are constant
= (rare constant offsets from other addresses.

29

Carnegie Mellon University

Detecting Similar Addresses

m For each basicblock

= For each memory operation
= Check if any prior operation in this basic block has a similar address calculation

m Similar Address Calculations
= s it this a getelementptr instruction?
= Does each component match?
" |f not, is the component a constant value?
= Accumulate constant differences

m Store memory operation indices and constant differences into basic
block info table

30

Carnegie Mellon University

Address Offsets

m Given a base address, each value passed to GetElementPtr applies
some offset

= Struct Type — value selects a field in the struct
= (Qtherwise — value is an index into an array of type

$90 = getelementptr inbounds %struct.OptionData ,
$struct.OptionData * %89, i64 1, 164 %iv, i32 8

31

Carnegie Mellon University

Current Static Analysis

m Not all addresses are required, exceptions:

= Addresses that are constant
= (rare constant offsets from other addresses.
= Qrare linear functions of loop induction variables.

32

Carnegie Mellon University

Global Variables

m Static analysis checks each address calculation

= |fthe base address is a global and uses constant offsets, then add a static instrumentation
call to record the runtime address once

= Elide the instruction to record the runtime address in the basic block.

m LLVM:

NULL != dyn cast<GlobalValue>(addr) &&
gv->isThreadLocal ()

33

Carnegie Mellon University

Loop-based Calculations

m ldentify memory accesses in loops where:
= Fach calculation component is constant

= Qrisloop invariant +«—— LLVM Scalar Evolution
= QOris the loop induction variable —

m lteration distance must be constant

for (i = m; 1i < n; 1 += step)

{ while (x !'= last)
e o o {
x = q[i+1]; *X = ...
pli] = x; } X+

34

Carnegie Mellon University

Loop Example

m What does this code look like in LLVM IR?
m Whatis the induction step?

.1lr.ph:
4 = phi i8 [%10, %8], [%2, %.lr.ph.preheader]
.01 = phi i8* [%9, %8], [%s, %.lr.ph.preheader]

o°

o°

%10 = load i8, i8* %9, align 1, !'tbaa !l
%11 = icmp eq 18 %10, O
br 11 %11, label %.loopexit.loopexit, label %.lr.ph

while (x !'= last)

{

*xX = ...
X++;

35

Carnegie Mellon University

Loop Example

m Ccode for earlier LLVM IR example
for (1=start; i<end; 1++) {
price = BlkSchlsEqEuroNoDiv(sptprice[1i],
strike[1], rate[i], wvolatility[1i],

otime[i], otypel[i], O0);

m 6 Load instructions do not need to be directly instrumented

36

Carnegie Mellon University

Current/ Future Memory Work

m Loop entry/ exit headers cost space
= (verhead on low iteration loops

m Extend loop work

= Mod operations (usually AND)
= Variable iteration distance

m l|dentify other elidable calculations
= g[0] = gl[*x] //ifsizeof(*x) < 6, then store value instead of address)

37

Carnegie Mellon University

Similar Address Problem (barnes)

m Conditional code in one path if (p != Local[ProcessId].pmem) {
. . SUBV (Local [ProcessId] .dr,
m Load/Store in tail block Pos (p) ,

Local [ProcessId] .posO0) ;
DOTVP (Local [ProcessId] .drsq,

Local [ProcessId] .dr,

Local[ProcessId] .dr) ;

}
Local [ProcessId] .drsq += epssq;

I\ drabs = sqrt((double) Local[ProcessId] .drsq)

T
~._

38

Carnegie Mellon University

Tail Duplication

m Duplicate the tail block to enlarge the scope for finding similar addresses
m Merge it with each of the predecessor blocks

T
\/

39

Carnegie Mellon University

Tail Duplication Algorithm

m Determine if the tail block is valid for duplication

= Not the return block
= No address taken
" Etc.

m Determine that each predecessor is valid
= Unconditional branch to tail block

m Duplicate and Merge

= Duplicate the tail block
= (reate / update PHI nodes as appropriate

40

Overview of Talk

General Program Instrumentation
Path Profiling

Memory Tracing

Integrated Instrumentation

Results

Carnegie Mellon University

41

Carnegie Mellon University

Instrumentation Performance Comparison

8 TACO
Memory Work
/ Control Flow
6
5
4
3
2
1
0
S © X D N\ €« R Q& OO QO AN & O DRA DY
S F & & & gz,@ & s{\-g@ S T T T oo TE TS FL S
AN RIS NG N X N S A S KRS KR o
\,b& & N N N & & ¢ @® N ¥ &7
Q N &8 ’@/@’b

42

Carnegie Mellon University

Instrumentation Performance Comparison

8 m TACO
Bl Memory Work
! B Control Flow
6
5
4
3
2
| I I
0
é\é&'&\\\&z &@@&&9\5\ > & QD A
& & & & @S R Q é\-\szé:&x@
CHFFSF ¢ STV ST T T PSS NI R
RIS & .\gb & & & < S NI N

43

Related Tools

Carnegie Mellon University

Control Memory Parallel

Slowdown Flow Accesses Actions
Pin BBCount 2x-4x b
Harmony 1.2x b
CAB Path Profiling | 1.4x-2.2x X
Pin Memory Trace 2X-8X X
PEBIL 7.7x X
MACP 1.5x-6x X
ShadowReplica 2.7X X X
PiPA HX X X
Cilkview 2x-10x b X
ParaMeter 3x-200x b X
Peregrine 2X-35X X X
Pin Task Graph 16x X X X
ParaOPs n/a X X X
Contech Ix-5x X X X

44

Carnegie Mellon University

Conclusion

m Prior work reduced instrumentation instructions required

m Prior work minimized instrumented thread interactions

= Tickets to order locks and barrier operations
= Maximize usage of buffers

m Instrumentation performance is often memory bandwidth
constrained

= Minimize the size of records
= Find redundant data and elide

m LTOisveryvaluable

45

Carnegie Mellon University

Future Work

m Global Variables
= Address is known at link time, how to record this

m Memory Operationsin a Loop
= Base pointer + offset function to reconstruct addresses

m Release set of collected task graphs

46

Carnegie Mellon University

Code Available

m http://bprail.github.io/contech/

47

Carnegie Mellon University

Hardware Configuration

m Intel Xeon E3-1240v5 (Skylake)
= 3.50 GHz Quad-core, 2-way Hyperthreading

m 32 GB Main Memory
m 256 GB NVMe M.2 PCle SSD

= minimal speedup versus tmpfs or local storage

48

Carnegie Mellon University

Objectives of Parallel Program Representation

m A common representation needs

= What was executed
= What was accessed
= |n what order did threads execute

m Generate the representation with no user intervention
= Without constraint of language, library, or structure

m Without recording architecture / runtime effects
= (ontext switches

= (Consistency model
= (ache Effects

49

Carnegie Mellon University

Contech’s Task Graph Representation

m Task Graphs are directed, acyclic graphs containing
= Nodes partitioned based on type
= Edges as scheduling dependencies
= Nodes contain lists of actions and data
= (ther graph annotations such as start / end time

50

Carnegie Mellon University

Task Graph Legend

Create Task

Dependency
‘.
Work Task
......... A
Context ID. Sequence ID

51

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)

return n;
int a = cilk spawn fib(n-1);

int b = fib(n-2);
cilk sync;

return a + b;

52

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a =
int b = fib(n-2) ;
cilk sync;

return a + b;

fib (2) ;

fib(n-1) ;

Carnegie Mellon University

53

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n; @
int a = cilk spawn
int b =

cilk sync; | |
return a + b; @ o

fib (2) ;

54

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;

return a + b;

fib (2) ;

55

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;

cilk sync;

fib (2) ;

56

Carnegie Mellon University

Parallel Program Diversity

m Language Diversity
= (, C++, Fortran, Java, Go, Rust, X10, ...

m Runtime Diversity
= Pthreads, OpenMP, MPI, (ilk, Galois, Legion, CnC, ...

m Pattern Diversity
= Regqular, pipelines, graphs, Map-reduce, Gather-scatter, ...

m Architecture Diversity
= 32-/64-bit x86, ARM, MIPS, Power, ...

57

