
Carnegie Mellon

Lecture 19

Region-Based Analysis

I. Basic Idea

II. Algorithm

III. Optimization and Complexity

IV. Comparing region-based analysis with iterative algorithms

[ALSU 9.7]

Phillip B. Gibbons 15745: Region-Based Analysis 1



Carnegie Mellon

Review: Iterative Data Flow Analysis

• Semi-lattice

– set of values V

– meet operator 

– Top T 

– finite descending chain?

15-745: Region-Based Analysis 2

Meet Operator: 
Union

{d2}{d1}

T = {d1,d2}

{}

Meet Operator: 
Intersection



Carnegie Mellon

Review: Iterative Data Flow Analysis

• Semi-lattice

– set of values V

– meet operator 

– Top T 

– finite descending chain?

• Transfer functions

– function of a basic block f: V  V 

– closed under composition

– meet-over-paths MOP

– monotone

– distributive?

15-745: Region-Based Analysis 3

If data flow framework is monotone
(i.e., x ≤ y implies f(x) ≤ f(y))
then if the algorithm converges, 
IN[b] ≤ MOP[b] *, so analysis is ?

For each node n: MOP(n) =  fpi (T), 
for all paths pi in data-flow graph 
reaching n.

If data flow framework is distributive
(i.e., f(x  y) = f(x)  f(y))
then if the algorithm converges, 
IN[b] = MOP[b] *, so ?

Data flow framework (monotone) 
converges if its lattice has ? 

* for backward analysis OUT[b]

safe.

a finite descending chain.

precision is high.



Carnegie Mellon

Review: Iterative Data Flow Analysis

• Semi-lattice

– set of values V

– meet operator 

– Top T 

– finite descending chain?

• Transfer functions

– function of a basic block f: V  V 

– closed under composition

– meet-over-paths MOP

– monotone

– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)

– repeated passes until find fixedpoint solution

– visit order of each pass: rPostOrder

15-745: Region-Based Analysis 4

Number of passes = number of 
back edges in any acyclic path + 2

❼

❺ ❻

B0

B2 B1

❹

❷ ❸

B3

B5 B4

❶B6

B0,B1,…,B6 is 
rPostOrder



Carnegie Mellon

Region-Based Analysis: Motivation

• Exploit the structure of block-structured programs in data flow

• Tie in several concepts studied:

– Use of structure in induction variables, loop invariant
• motivated by nature of the problem

• This lecture: can we use structure for speed?

– Iterative algorithm for data flow
• This lecture: an alternative algorithm

– Reducibility
• all retreating edges of DFS Tree are back edges (t->h, h dominates t)

• reducible graphs converge quickly

• This lecture: algorithm exploits & requires reducibility

• Usefulness in practice

– Faster for “harder” analyses
• e.g., where paths have cycles that may change the data-flow values

– Useful for analyses related to structure
• e.g., interprocedural analysis

– But not so well-suited to backward analyses

• Theoretically interesting: better understanding of data flow

15-745: Region-Based Analysis 5



Carnegie Mellon

15-745: Region-Based Analysis 6

Review: Dominance

11

1

5

6 7

8

13

2

3

4

9

10

12

Control flow graph

x dominates w (x dom w) iff x sdom w OR x = w

5 dominates {5,6,7,8}:
All paths to 6, 7, or 8

must visit 5 first

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first



Carnegie Mellon

I. Region Analysis: Big Picture

15-745: Region-Based Analysis 77

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

A region in a flow graph is 
a set of nodes with a 
header that dominates all 
other nodes in a region
+ (almost all) control flow 
edges between them

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4



Carnegie Mellon

B1 B2  

Basic Idea

• In Iterative Analysis:

• DEFINITION: Transfer function FB: 
summarize effect from beginning to end of basic block B

• In Region-Based Analysis:

• DEFINITION: Transfer function FR,B:
summarize effect from beginning of region R to end of basic block B

• Recursively
construct a larger region R from smaller regions
construct FR,B from transfer functions for smaller regions

until the program is one region

• Let P be the region for the entire program, 
and v be initial value at entry node

– out[B] = FP,B(v)

– in[B] =  B’ out[B’], where B’ is a predecessor of B

15-745: Region-Based Analysis 8

R

B

FR,B

P

B

FP,B2FP,B1

In[B] = FP,B1(v)  FP,B2(v)



Carnegie Mellon

II. Algorithm

1. Operations on transfer functions

2. How to build nested regions?

3. How to construct transfer functions that correspond to the larger regions?

15-745: Region-Based Analysis 9



Carnegie Mellon

1. Operations on Transfer Functions

Example: Reaching Definitions

• Transfer function over a block:

• Resulting transfer functions (after operations) must be consistent with this form:

– same equation

– updated values for Gen and Kill set parameters

15-745: Region-Based Analysis 10

F(x) = Gen  (x – Kill)

F(x)

x

Input parameters



Carnegie Mellon

Gen set 
after composition

Kill set 
after composition

Operations on Transfer Functions: Composition

F2(F1(x)) = Gen2  (F1(x) - Kill2)

15-745: Region-Based Analysis 11

F2 ◦ F1 

F2(F1(x))

x

F2

F1
Gen1

Kill1

Gen2

Kill2

= Gen2  (Gen1  (x - Kill1)) - Kill2)

= Gen2  (Gen1 - Kill2)  (x – (Kill1  Kill2))

F2 ◦ F1 



Carnegie Mellon

F1(x)  F2(x) = Gen1  (x - Kill1)  Gen2  (x - Kill2)

Gen set after  Kill set after 

Operations on Transfer Functions: Meet

15-745: Region-Based Analysis 12

x

F2F1

F1(x)  F2(x)

Gen1

Kill1

Gen2

Kill2

(Recall that for Reaching Definitions,  =.)

= (Gen1  Gen2)  (x - (Kill1  Kill2))



Carnegie Mellon

Operations on Transfer Functions: Closure

F*(x) = ∧ 𝑛≥0 Fn (x)

15-745: Region-Based Analysis 13

x

F Gen
Kill

F*(x)
New Feature!

(We don’t have this in
iterative data flow analysis.

Enables better summarization
of the effect of the loop.)

What is the value at the input of the block?
• including the possible effects of the back edge

 it may iterate 0, 1, 2, …, ∞ number of times

= x  (Gen (x - Kill))  (Gen ((Gen (x - Kill)) - Kill))  ... 

= x  F(x)  F(F(x))  ...

Gen set Kill set (after closure)

= Gen (x -)

For Reaching Definitions



Carnegie Mellon

Recap of Operations on Transfer Functions

For Reaching Definitions:

• Transfer Function (F(x)):

• Composition (F2(F1(x))):

• Meet: (F1(x)  F2(x)):

• Closure: (F*(x)): 

15-745: Region-Based Analysis 14

F(x) = Gen (x – Kill)

Gen = Gen2 (Gen1 - Kill2)
Kill = Kill1  Kill2

Gen = Gen1 Gen2

Kill = Kill1  Kill2

Gen = Gen
Kill = 



Carnegie Mellon

2. Structure of Nested Regions (An Example)

• A region in a flow graph is a set of nodes that

– includes a header, which dominates all other nodes in a region

• T1-T2 rule (Hecht & Ullman) for Flow Graphs

• T1: Remove a loop
If n is a node with a loop, i.e. an edge n->n, delete that edge (all such edges for n)

• T2: Remove a vertex 
If there is a node n that has a unique predecessor, m, 
then m may consume n by 
deleting n and making all successors of n be successors of m.

15-745: Region-Based Analysis 15



Carnegie Mellon

Example

• In reduced graph: 

– each vertex represents a subgraph of original graph (a region).

– each edge represents an edge in original graph

• Limit flow graph: result of exhaustive application of T1 and T2

– independent of order of application 

– reducible flow graph: limit flow graph has a single vertex

15-745: Region-Based Analysis 16

a

b c

d

T2: Remove a vertex 
w/unique predecessor

T1: Remove n->n loops



Carnegie Mellon

3. Transfer Functions for T2 Rule

• Transfer function
FR,B: summarizes the effect from beginning of R to end of B
FR,in(H2): summarizes the effect from beginning of R to beginning of H2

– Unchanged for blocks B in region R1 (FR,B = FR1,B) 

– FR,in(H2) = P FR,P , where P is a predecessor block of H2

– For blocks B in region R2: FR,B = FR2,B ◦ FR,in(H2)

15-745: Region-Based Analysis 17

R1 R

H1

R2

H2

R1 R

H

R2

T2: Remove a vertex 
w/unique predecessor

Before After



Carnegie Mellon

R R: new region
(subsumes back edges 

from R1  R1)

4. Transfer Functions for T1 Rule

Observations:

– the header of R1 (i.e. H) is also the header of R

– we already know how to get from H to B for every block B in R1: i.e. FR1,B

• this will be the last step in getting from the new R to B (composition)

– what’s new: we need to get from R to the input of H, including back edges!

• this involves both meet () and closure (*) operations

15-745: Region-Based Analysis 18

R1H

T1: Remove n->n loops



Carnegie Mellon

Transfer Functions for T1 Rule

• Transfer Function FR,B

– FR,in(H) = (P FR1,P)*, where p is a predecessor block of H in R

– FR,B = FR1,B ◦ FR,in(H)

15-745: Region-Based Analysis 19

R

R1H

R: new region
(subsumes back edges 

from R1  R1)

p1

p2

T1: Remove n->n loops



Carnegie Mellon

Example

• R: region name; R’: region whose header will be subsumed;  R’’: T2’s other region
• T2: FR,in(R’) =  P FR,P , P ϵ pred(header of R’); for B ϵ R’: FR,B = FR’,B ◦ FR,in(R’); for B ϵ R’’: FR,B = FR’’,B

• T1: FR,in(R’) = (P FR’,P)*, P ϵ pred(header of R’); FR,B = FR’,B ◦ FR,in(R’)

15-745: Region-Based Analysis 20

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R Rule R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FR1,B1 = FB1 FR1,B1 = FB1 FB2 ◦ FR1,in(B2) = FB2 ◦ FB1

R2 T2 R1 FR2,B3 = FB3 FR1,B1 ◦ FR2,B3 = FB1 ◦ FB3 FR1,B2 ◦ FB3=FB2 ◦ FB1◦ FB3 FB3

R3 T1 R2 (FR2,B1FR2,B2)* FR2,B1 ◦ FR3,in(R2) FR2,B2 ◦ FR3,in(R2) FB3 ◦ FR3,in(R2)

R4 T2 B4 FR3,B3FR3,B2 FR3,B1 FR3,B2 FR3,B3 FB4 ◦ FR4,in(B4)



Carnegie Mellon

Example

• R: region name; R’: region whose header will be subsumed;  R’’: T2’s other region
• T2: FR,in(R’) =  P FR,P , P ϵ pred(header of R’); for B ϵ R’: FR,B = FR’,B ◦ FR,in(R’); for B ϵ R’’: FR,B = FR’’,B

• T1: FR,in(R’) = (P FR’,P)*, P ϵ pred(header of R’); FR,B = FR’,B ◦ FR,in(R’)

15-745: Region-Based Analysis 21

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R Rule R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FR1,B1 = FB1 FR1,B1 = FB1 FB2 ◦ FR1,in(B2) = FB2 ◦ FB1

R2 T2 R1 FR2,B3 = FB3 FR1,B1 ◦ FR2,B3 = FB1 ◦ FB3 FR1,B2 ◦ FB3=FB2 ◦ FB1◦ FB3 FB3

R3 T1 R2 (FR2,B1FR2,B2)* FR2,B1 ◦ FR3,in(R2) FR2,B2 ◦ FR3,in(R2) FB3 ◦ FR3,in(R2)

R4 T2 B4 FR3,B3FR3,B2 FR3,B1 FR3,B2 FR3,B3 FB4 ◦ FR4,in(B4)



Carnegie Mellon

III. Complexity of Algorithm

15-745: Region-Based Analysis 22

12345
1

2

3

4

R Rule R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4 FR,B5

R1 T2 B1 FB2 FB1 ◦ FB2 FB2

R2 T2 R1 FB3 FR1,B1 ◦ FB3 FR1,B2 ◦ FB3 FB3

R3 T2 R2 FB4 FR2,B1 ◦ FB4 FR2,B2 ◦ FB4 FR2,B3 ◦ FB4 FB4

R4 T2 R3 FB5 FR3,B1 ◦ FB5 FR3,B2 ◦ FB5 FR3,B3 ◦ FB5 FB4 ◦ FB5 FB5

R FR4,in(R)

R4 I

R3 FB5 ◦ FR4,in(R4)

R2 FB4 ◦ FR4,in(R3)

R1 FB3 ◦ FR4,in(R2)

B1 FB2 ◦ FR4,in(R1)

B FR4,B

B5 FB5 ◦ FR4,in(R4)

B4 FB4 ◦ FR4,in(R3)

B3 FB3 ◦ FR4,in(R2)

B2 FB2 ◦ FR4,in(R1)

B1 FB1 ◦ FR4,in(B1)

R4

R3

B4 R2

R1

B2 B1

B3

B5

𝑂 𝑛2

entries

𝑂 𝑛
entries



Carnegie Mellon

Optimization

• Let m = number of edges, n = number of nodes

• Ideas for optimization

– If we compute FR,B for every region B is in, then quadratic complexity

– We are ultimately only interested in the entire region (E); 
we need to compute only FE,B for every B.

• There are many common subexpressions between FE,B1,  FE,B2, ...

• Number of FE,B calculated = m

– Also, we need to compute FR,in(R’), where R’ represents the region whose 
header is subsumed.

• Number of FR,B calculated, where R is not final = n

• Total number of FR,B calculated: (m + n)

– Data structure (union-find) keeps “header” relationship

• Practical algorithm: O(m log n)

• Complexity: O(m(m,n)),  is inverse Ackermann function

15-745: Region-Based Analysis 23



Carnegie Mellon

Reducibility

• If no T1, T2 is applicable before graph is reduced to single node, then split node 
(make k copies of node, one per predecessor) and continue

• Worst case: exponential 

• Most graphs (including GOTO programs) are reducible

15-745: Region-Based Analysis 24

1

2 3

T2: Remove a vertex 
w/unique predecessor

T1: Remove n->n loops



Carnegie Mellon

IV. Comparison with Iterative Data Flow Analysis

• Applicability
– Definitions of F* can make technique more powerful than iterative algorithms
– Backward flow: reverse graph is not typically reducible.

• Requires more effort to adapt to backward flow than iterative algorithm

– More important for interprocedural optimization
• e.g., see next lecture on Global Scheduling

• Speed

– Irreducible graphs
• Iterative algorithm can process irreducible parts uniformly
• Serious “irreducibility” can be slow with region-based analysis

– Reducible graph & Cycles do not add information (common) 
• Iterative: (depth + 2) passes

depth is 2.75 average, independent of code length
• Region-based analysis: Theoretically almost linear, typically O(m log n)

– Reducible & Cycles add information
• Iterative takes longer to converge
• Region-based analysis remains the same

15-745: Region-Based Analysis 25



Carnegie Mellon

Today’s Class: Region-Based Analysis

2615-745: Region-Based Analysis

Friday’s Class

• Global Scheduling
– ALSU 10.4-10.5


