Lecture 20
Global Scheduling

|. Legal code motions
Il. Basic Algorithm

[ALSU 10.4]

Phillip B. Gibbons 15-745: Global Scheduling 1

\/

a + b

"
I

.c+d

7\

<
I

List Scheduling:
e within a basic block
(prior lecture)

Scheduling Roadmap

X =a+b ‘ x=a+ b
/ \ _______ . v < g
: y=c+d /l
S T ;
Global Scheduling: Software Pipelining:
® gcross basic blocks e gcross loop iterations

15-745: Global Scheduling

2

Review: List Scheduling

* The most common technique for scheduling instructions within a basic block

We don’t need to worry about:

— control flow \/

a+ b

X
We do need to worry about:

— data dependences Y c +d

— hardware resources /\

* Even without control flow, the problem is still NP-hard

15-745: Global Scheduling 3

Review: Representing Data Dependences:
The Data Precedence Graph (DPG)

 Two different kinds of edges:

DPG
Code -
I0: x. = 1: true “edges”: E @
L (read-after-write) e =(I0,I1
Il. y - & (’)
I2: \=A G
I3: z = (write-after-read) &a
Why d h them? 5
. y distinguish them?~ e

— do they affect scheduling differently?
RAW: read waits for value to be computed

WAR: write only needs ensure it’s not started ahead of the read
 What about output dependences?

WAW: earlier write is removed by Dead Code Elimination
(recall we are scheduling a single basic block, so WAW is unconditional)

Carnegie Mellon -

15-745: Global Scheduling 4

Review: List Scheduling

latency(x) if z is a leaf

priority(xz) = { max(latency(x) + ma:c(x,y)eE(pr'iO'rity(y)),

MaT (4 \e (priority(y))) otherwise.
I0: a =1 Cycle
I1: £ =a + x 10 12 0
I2: b =7
I3: c = 9 11 13 1
I4: g=£f + b 15 16 2
I6: e = 19
I7: h=f + ¢ 13 19 4
I8: Jj =d + vy NOP | NOP 5
I9:z = -1 10 [NOP | 6
I10: JMP L1
* 2 identical fully-pipelined FUs Break ties by lower
e adds take 2 cycles; all other insts take 1 cycle instruction number

Carnegie Mellon -

15-745: Global Scheduling 5

\/

a + b

X

c + d

7\

y

List Scheduling:
e within a basic block

Scheduling Roadmap

IIIII

~

y=c+d
S T
Global Scheduling:

‘x=a+b
y=.c+d
w/l

Software Pipelining:

® gcross basic blocks

o

/

e gcross loop iterations

15-745: Global Scheduling

6

Introduction to Global Scheduling

B, Result of
Assume each clock can execute LD R6, O(RLl) ; NOP Local
2 operations of any kind NOP : NOP Scheduling
Assume LD takes 2 cycles, fully pipelined BEQZ R6, L ; NOP
— B
if (a==0) goto L LD R7, 0(R2) ; NOP| °
[NOP ; NOP
ST O0(R3), R7 ; NOP
L _ L:|1D R8, 0(R4) ; NOP B
. e p—ig
NOP ; NOP
ADD R8, R8, R8 ; NOP
ST O0(R5), R8
. 1012 LD R6, O(Rl) ; LD R8, O (R4) By Result of
|gure : LD R7, O(R2) ; NOP Globa‘l
in ALSU ADD R8, R8, R8 ; BEQZ R6, L Scheduling
/\ B3’

L:{ST 0(RS5),

NOP 3

R8 ;

ST O(R5), R8 ;

ST 0(R3), R7

15-745: Global Scheduling

7

Terminology

Control equivalence:

e Two operations o, and o, are control equivalent if o,
is executed if and only if o, is executed.

Control dependence:

* Anopo,iscontrol dependent on op o,
\/ if the execution of o0, depends on the outcome of o,.

/ \ Speculation:

 An operation o is speculatively executed if it is

\/ executed before all the operations it depends on

(control-wise) have been executed.

* Requirements to execute operation speculatively?
— No side-effects, does not raise an exception
— Does not violate data dependences

15-745: Global Scheduling 8

-
Code Motion

/\ Goal: Shorten execution time probabilistically

(based on estimated frequency of control path)

Moving instructions up:

\/ * Move instruction to a cut set (from entry)

Speculation: even when not anticipated

§! g Moving instructions down:

/\ * Move instruction to a cut set (from exit)

* May execute extra instruction

\/ Can duplicate code

15-745: Global Scheduling 9

Review: Code Motion for Partial Redundancy Elimination

.....
e
0y

- + = a+b | _ - cutset

—

e Partial redundancy at p: redundant on some but not all paths
— Add operations to create a cut set containing a+b
— Note: Moving operations up can eliminate redundancy

e Constraint on placement: no wasted operation

— a+b is “anticipated” at B if its value computed at B will be used along ALL
subsequent paths

— a, b not redefined, no branches that lead to exit without use
* Range where a+b is anticipated = Choice

Carnegie Mellon -

15-745: Global Scheduling 10

General-Purpose Applications

* Lots of data dependences
* Key performance factor: memory latencies

« Move memory fetches up

— Speculative memory fetches can be expensive

e Control-intensive: get execution profile

— Static estimation
* Innermost loops are frequently executed
— back edges are likely to be taken
* Edges that branch to exit and exception routines are not likely to be taken
— Dynamic profiling

* Instrument code and measure using representative data

15-745: Global Scheduling 11

-
A Basic Global Scheduling Algorithm

e Schedule innermost loops first
* Only upward code motion, to either:
— a “control-equivalent” block (non-speculative), or
— a control-equivalent block of a dominating predecessor (speculative, 1 branch)

* No creation of copies

15-745: Global Scheduling 12

Program Representation

Ry

& el e

—) %

* Recall: A region in a control flow graph is:

— aset of basic blocks and all the edges connecting these blocks
(expect possibly back edges into the header)

— such that control from outside the region must enter through the header

* A procedure is represented as a hierarchy of loop regions

— The entire control flow graph is a region
— Each natural loop (single entry with back edge to it) in the flow graph is a region
— Natural loops are hierarchically nested

* Schedule regions from inner to outer

— treat inner loop as a black box unit: can schedule around it but not into it
— ignore all the loop back edges = get an acyclic graph

15-745: Global Scheduling

13

Useful Definitions

Bl
 Blocks B and B’ are control equivalent if
— B is executed if and only if B” is executed /\
— E.g., which sets of blocks are control equivalent? B2 B3
{B1,B4,B6}, {B1}, {B2},...,{B6} \/
Note: Two ops (instructions) are control equivalent iff B4
their basic blocks are control equivalent
(could be from same basic block)
B5
* NonSpeculative(B) = all blocks that are control equivalent
to B and dominated by B B6

* Speculative(B) = all blocks B’ not control equivalent to B
such that

— B’is a successor of at least one block B” thatis = NonSpeculative(B1)? {B1,B4,B6}
: 3 |
control equivalent to B, and NonSpeculative(B2)? {B2)

— B’ is dominated by B”
Speculative(B1) ? {B2,B3,B5}
Move up to a control-equivalent block or Speculative(B2) ? 0
a control-equivalent block of a dominating predecessor

15-745: Global Scheduling 14

-
Basic Algorithm

Compute data dependences;
For each region R in the hierarchy of loop regions from inner to outer {
For each basic block B of R in prioritized topological order {
CandInsts = ready instructions in NonSpeculative(B) U Speculative(B);
For (t =1, 2, ... until all instructions from B are scheduled) { // schedule time slots in order
For (n in CandInst in priority order) { // may or may not be from B
if (ok to move n to B && n has no resource conflicts at time t) {
S(n)=<B,t>; // instruction n is mapped to basic block B and time slot t
Update resource commitments;
Update data dependences;

}

Update CandInsts; // scheduled insts will often make new insts ready

}

Priority functions: Non-speculative before speculative, and otherwise use same priority as in list scheduling
Ok to move: Don’t speculatively move a store instruction, don’t move a procedure call, etc

15-745: Global Scheduling 15

Basic Algorithm Example

Each clock: 2 operations of any kind

LD takes 2 cycles, fully pipelined

Priority order of blocks: B; B, Bj

Data dependences?

NonSpeculative(B,)? {B, B}
Speculative(B,)? {B,}

CandInsts? {LD R6; LD R8;LD R7}

LD R6,0(R1)
LD R7,0(R2)
ADD RS, R8,RS8

; LD R8,0(R4)
; NOP
; BEQZ R6, L

blue arcs at right
Control equivalent Blocks? {B; B}, {B,}

ST 0(R3),R7 ; NOP

"

L:|ST O(R5),R8 ;

NOP

L:

B,
LD R6, O0(R1) ; NOP
NOP A\ NOP
BEQZ R6, L ; NOP
\ BZ
LD R7, O0(R2) ; NOP
NOP ; P
ST O0(R3), R7 ; NOP
LD R8, O(R4) ; NOP B
NOP ; P
ADD R8, R8, R8 ; NOP
ST 0(R§77‘R8

e t=27 {ADD R8; BEQZ R6; LD R7}
e t=37 {ADD R8; BEQZ R6; ST R7}
* NonSpeculative(B,)? {B,}

* Speculative(B,)? {}

e Candlnsts for B,? {ST R7}

* Candlnsts for B;? {ST R8}

15-745: Global Scheduling

16

Comparison to Earlier Global Schedule

LD R6,0(R1)
LD R7,0(R2)
ADD RS8, R8,R8

7

’

4

; LD R8,0(R4)
; NOP
; BEQZ R6, L

B,

A/B\

ST O0(R5),R8 ; NOP | 3 ST O0(R5),R8 ; ST 0(R3),R7 By
ID R6,0(R1) ; LD RS,0(R4) | B2
LD R7,0(R2) ; NOP
ADD RS,R8,R8 ; BEQZ R6, L
BZ
ST 0(R3),R7 ; NOP

.

L:

ST O(R5),R8 ;

NOP

Basic Algorithm’s schedule requires one more cycle when branch not taken

17

15-745: Global Scheduling

-
Updating Data Dependence after Code Motion

Cannot move both up!

If a variable is live at a program point, then we cannot move
a speculative definition to the variable above that program point

15-745: Global Scheduling 18

Extension

* Inregion-based scheduling, loop iteration boundary limits code motion:
operations from one iteration cannot overlap with those from another

* Prepass before scheduling: loop unrolling

* Especially important to move operation up loop back edges

for (i = 0; 1+4 < N; i+=4) {

S(i);
for (i = 0; i < N; i++) { S(i+l);
S (i) ; S(1+2);
} S(i+3);
Original Loop j}gor (; 1 < N; i++) {
S(i);
}

Unrolled Loop

15-745: Global Scheduling 19

-
Today’s Class: Global Scheduling

|. Legal code motions
Il. Basic Algorithm

Monday’s Class

* Software Pipelining & Prefetching
— ALSU 10.5, ALSU 11.11.4

15-745: Global Scheduling 20

