
Carnegie Mellon

Lecture 20

Global Scheduling

Phillip B. Gibbons 15-745: Global Scheduling 1

[ALSU 10.4]

I. Legal code motions
II. Basic Algorithm



Carnegie Mellon

Scheduling Roadmap

15-745: Global Scheduling

…

List Scheduling:
• within a basic block

(prior lecture)

y = c + d

x = a + b

Global Scheduling:
• across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
• across loop iterations

y = c + d

x = a + b

2



Carnegie Mellon

Review: List Scheduling

• The most common technique for scheduling instructions within a basic block

We don’t need to worry about:

– control flow

We do need to worry about:

– data dependences

– hardware resources

• Even without control flow, the problem is still NP-hard

15-745: Global Scheduling

…
y = c + d

x = a + b

3



Carnegie Mellon

Review: Representing Data Dependences: 
The Data Precedence Graph (DPG)

• Two different kinds of edges:

• Why distinguish them?

– do they affect scheduling differently?

• What about output dependences?

I0: x = 1;

I1: y = x;

I2: x = 2;

I3: z = x;

I2

I0

I3

I1

DPG
Code

true “edges”: E
(read-after-write) e = (I0,I1)

e = (I2,I3)

x

x
“anti-edges”: E’

(write-after-read) e’ = (I1,I2)

415-745: Global Scheduling

RAW: read waits for value to be computed
WAR: write only needs ensure it’s not started ahead of the read

WAW: earlier write is removed by Dead Code Elimination
(recall we are scheduling a single basic block, so WAW is unconditional)



Carnegie Mellon

Review: List Scheduling

I0: a = 1

I1: f = a + x

I2: b = 7

I3: c = 9

I4: g = f + b

I5: d = 13

I6: e = 19

I7: h = f + c

I8: j = d + y

I9: z = -1

I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0

1

2

3

4

5

6

5

• 2 identical fully-pipelined FUs

• adds take 2 cycles; all other insts take 1 cycle

15-745: Global Scheduling

1

2 3 3 2 3

444 5

6 I0 I2

I1 I3

I5 I6

I4 I7

I8 I9

NOP     NOP

I10      NOP

Break ties by lower 
instruction number



Carnegie Mellon

Scheduling Roadmap

15-745: Global Scheduling

…

List Scheduling:
• within a basic block

y = c + d

x = a + b

Global Scheduling:
• across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
• across loop iterations

y = c + d

x = a + b

6



Carnegie Mellon

Introduction to Global Scheduling

Assume each clock can execute
2 operations of any kind

Assume LD takes 2 cycles, fully pipelined

15-745: Global Scheduling 7

if (a==0) goto L

e = d + d

c = b

L:

LD R6, 0(R1) ; NOP

NOP ; NOP

BEQZ R6, L ; NOP

LD R8, 0(R4) ; NOP

NOP ; NOP

ADD R8, R8, R8 ; NOP

ST 0(R5), R8

LD R7, 0(R2) ; NOP

NOP ; NOP

ST 0(R3), R7 ; NOP

L:

B1

B2

B3

LD R6, 0(R1) ; LD R8, 0(R4)

LD R7, 0(R2) ; NOP

ADD R8, R8, R8 ; BEQZ R6, L

ST 0(R5), R8 ; NOP ST 0(R5), R8 ; ST 0(R3), R7 L:

B1

B3’B3

Result of
Local

Scheduling

Result of
Global

Scheduling
Figure 10.12

in ALSU



Carnegie Mellon

Terminology

Control equivalence:

• Two operations o1 and o2 are control equivalent if o1 

is executed if and only if o2 is executed. 

Control dependence:

• An op o2 is control dependent on op o1

if the execution of o2 depends on the outcome of o1.

Speculation:

• An operation o is speculatively executed if it is 
executed before all the operations it depends on 
(control-wise) have been executed. 

• Requirements to execute operation speculatively?

– No side-effects, does not raise an exception

– Does not violate data dependences

15-745: Global Scheduling 8



Carnegie Mellon

Code Motion

Goal: Shorten execution time probabilistically
(based on estimated frequency of control path)

Moving instructions up:

• Move instruction to a cut set (from entry)

• Speculation: even when not anticipated

Moving instructions down:

• Move instruction to a cut set (from exit)

• May execute extra instruction 

• Can duplicate code 

15-745: Global Scheduling 9

op1 

op1

op2 

op2 op2



Carnegie Mellon

Review: Code Motion for Partial Redundancy Elimination

• Partial redundancy at p: redundant on some but not all paths

– Add operations to create a cut set containing a+b

– Note: Moving operations up can eliminate redundancy

• Constraint on placement: no wasted operation

– a+b is “anticipated” at B if its value computed at B will be used along ALL 
subsequent paths

– a, b not redefined, no branches that lead to exit without use

• Range where a+b is anticipated  Choice

15-745: Global Scheduling 10

… = a+b

entry

… = a+b

… = a+b… = a+b

a = …

b = …

cut set

p:



Carnegie Mellon

General-Purpose Applications

• Lots of data dependences

• Key performance factor: memory latencies

• Move memory fetches up

– Speculative memory fetches can be expensive

• Control-intensive: get execution profile

– Static estimation

• Innermost loops are frequently executed

– back edges are likely to be taken

• Edges that branch to exit and exception routines are not likely to be taken

– Dynamic profiling

• Instrument code and measure using representative data

15-745: Global Scheduling 11



Carnegie Mellon

A Basic Global Scheduling Algorithm

• Schedule innermost loops first

• Only upward code motion, to either:

– a “control-equivalent” block (non-speculative), or

– a control-equivalent block of a dominating predecessor (speculative, 1 branch)

• No creation of copies

15-745: Global Scheduling 12



Carnegie Mellon

Program Representation

• Recall: A region in a control flow graph is:

– a set of basic blocks and all the edges connecting these blocks
(expect possibly back edges into the header)

– such that control from outside the region must enter through the header

• A procedure is represented as a hierarchy of loop regions

– The entire control flow graph is a region

– Each natural loop (single entry with back edge to it) in the flow graph is a region

– Natural loops are hierarchically nested

• Schedule regions from inner to outer

– treat inner loop as a black box unit: can schedule around it but not into it

– ignore all the loop back edges  get an acyclic graph

15-745: Global Scheduling 13

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3



Carnegie Mellon

Useful Definitions

• Blocks B and B’ are control equivalent if
– B is executed if and only if B’ is executed
– E.g., which sets of blocks are control equivalent?

{B1,B4,B6}, {B1}, {B2},…,{B6}

Note: Two ops (instructions) are control equivalent iff
their basic blocks are control equivalent
(could be from same basic block)

• NonSpeculative(B) = all blocks that are control equivalent 
to B and dominated by B

• Speculative(B) = all blocks B’ not control equivalent to B 
such that
– B’ is a successor of at least one block B’’ that is 

control equivalent to B, and
– B’ is dominated by B’’

15-745: Global Scheduling 14

B1

B4

B6

B5

B2 B3

Speculative(B1) ? {B2,B3,B5}

Speculative(B2) ? {}Move up to a control-equivalent block or 
a control-equivalent block of a dominating predecessor

NonSpeculative(B1)? {B1,B4,B6}

NonSpeculative(B2)? {B2}



Carnegie Mellon

Basic Algorithm

Compute data dependences;

For each region R in the hierarchy of loop regions from inner to outer {

For each basic block B of R in prioritized topological order {

CandInsts = ready instructions in NonSpeculative(B)  Speculative(B);     

For (t = 1, 2, ... until all instructions from B are scheduled)  {     // schedule time slots in order

For (n in CandInst in priority order) {                                          // may or may not be from B

if (ok to move n to B && n has no resource conflicts at time t) {

S(n) = < B, t > ; // instruction n is mapped to basic block B and time slot t

Update resource commitments;

Update data dependences;

}

}

Update CandInsts;                                      // scheduled insts will often make new insts ready

}

}

}

Priority functions: Non-speculative before speculative, and otherwise use same priority as in list scheduling
Ok to move: Don’t speculatively move a store instruction, don’t move a procedure call, etc

15-745: Global Scheduling 15



Carnegie Mellon

Basic Algorithm Example

• Each clock: 2 operations of any kind

• LD takes 2 cycles, fully pipelined

• Priority order of blocks: B1  , B2  , B3

• Data dependences?

• Control equivalent Blocks?

• NonSpeculative(B1)?

• Speculative(B1)?

• CandInsts? 

15-745: Global Scheduling 16

LD R6, 0(R1) ; NOP

NOP ; NOP

BEQZ R6, L ; NOP

LD R8, 0(R4) ; NOP

NOP ; NOP

ADD R8, R8, R8 ; NOP

ST 0(R5), R8

LD R7, 0(R2) ; NOP

NOP ; NOP

ST 0(R3), R7 ; NOP

L:

B1

B2

B3

LD R6, 0(R1) ; LD R8, 0(R4)
LD R7, 0(R2) ; NOP

ADD R8, R8, R8 ; BEQZ R6, L

ST 0(R3), R7 ; NOP

ST 0(R5), R8 ; NOPL:

{B1 ,B3}, {B2}

{B2}

{B1 ,B3}

blue arcs at right

{LD R6; LD R8; LD R7}

• t=2?
• t=3?
• NonSpeculative(B2)?
• Speculative(B2)?
• CandInsts for B2?
• CandInsts for B3?

{ADD R8; BEQZ R6; LD R7}
{ADD R8; BEQZ R6; ST R7}

{ST R7}

{B2}
{}

{ST R8}



Carnegie Mellon

Comparison to Earlier Global Schedule

15-745: Global Scheduling 17

LD R6, 0(R1) ; LD R8, 0(R4)
LD R7, 0(R2) ; NOP
ADD R8, R8, R8 ; BEQZ R6, L

ST 0(R5), R8 ; NOP ST 0(R5), R8 ; ST 0(R3), R7 L:

B1

B3’B3

LD R6, 0(R1) ; LD R8, 0(R4)
LD R7, 0(R2) ; NOP

ADD R8, R8, R8 ; BEQZ R6, L

ST 0(R3), R7 ; NOP

ST 0(R5), R8 ; NOPL:

B1

B2

B3

Basic Algorithm’s schedule requires one more cycle when branch not taken 



Carnegie Mellon

Updating Data Dependence after Code Motion

15-745: Global Scheduling 18

x = 2 x = 1

x = 2

x = 1 x = 2

x = 1

If a variable is live at a program point, then we cannot move
a speculative definition to the variable above that program point

Cannot move both up!



Carnegie Mellon

Extension

• In region-based scheduling, loop iteration boundary limits code motion:
operations from one iteration cannot overlap with those from another

• Prepass before scheduling: loop unrolling

• Especially important to move operation up loop back edges

15-745: Global Scheduling 19

for (i = 0; i < N; i++) {

S(i);

}

Original Loop

for (i = 0; i+4 < N; i+=4) {

S(i);

S(i+1);

S(i+2);

S(i+3);

}

for ( ; i < N; i++) {

S(i);

}

Unrolled Loop



Carnegie Mellon

Today’s Class: Global Scheduling

2015-745: Global Scheduling

Monday’s Class

• Software Pipelining & Prefetching
– ALSU 10.5, ALSU 11.11.4

I. Legal code motions
II. Basic Algorithm


