
Carnegie Mellon

Lecture 22

Locality Analysis and Prefetching

Phillip B. Gibbons 15-745: Locality Analysis and Prefetching 1

[ALSU 11.5]

I. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

II. Prefetching Pointer-Based Structures

Carnegie Mellon

i

j

B[j+1][0]

i

j

B[j][0]

Recall: Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial TemporalTemporal

(assume row-major, 2 elements per cache line, N small)

(Self) (Self)

15-745: Locality Analysis 2

(Group)
except for

Carnegie Mellon

I. Predicting Cache Behavior through “Locality Analysis”

• Definitions:

– Reuse:

• accessing a location that has been accessed in the past

– Locality:

• accessing a location that is now found in the cache

• Key Insights

– Locality only occurs when there is reuse!

– BUT, reuse does not necessarily result in locality.

• why not?

315-745: Locality Analysis

Carnegie Mellon

Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse  localized iteration space  locality

415-745: Locality Analysis

Carnegie Mellon

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

515-745: Locality Analysis

Carnegie Mellon

More Complicated Example

for i = ...

for j = 0 to m

A[2i+2][m-j][i+3j+1] = ...;

A[2i+2][m-j][i+3j+1] = A +
i
j

2
0
1

0
-1
3

2
m
1

Note: Representation is for Affine Array Indexes, i.e.
the index for each dimension of the array is an affine expression of
surrounding loop variables and symbolic constants

An expression of one or more variables 𝑥1, 𝑥2, … , 𝑥𝑛is affine if it can be expressed as
𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 for constants 𝑐0, 𝑐1, … , 𝑐𝑛

615-745: Locality Analysis

Carnegie Mellon

• Temporal reuse occurs between iterations and whenever:

• There is a well-known concept from linear algebra that characterizes when
and satisfy the above equation:

➢ Set of all solutions to H v = 0 is called the nullspace of H

➢ Two iterations refer to the same array element iff the difference of their
loop-index vectors is in the nullspace of H

• A nullspace can be summarized by its basis vectors

➢ Any vector in the nullspace is a linear combination of the basis vectors

A. Finding Temporal Reuse

715-745: Locality Analysis

Carnegie Mellon

Temporal (Self-)Reuse Example

• For B[j+1][0] reuse between iterations (i1,j1) and (i2,j2) whenever:

• The nullspace of is summarized by the basis vector because

represents all the vectors v such that v =

• So reuse occurs whenever =

➢ i.e., whenever j1 = j2, and regardless of the difference between i1 and i2

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

c

c
inner or outer loop?

outer

15-745: Locality Analysis 8

Carnegie Mellon

More Complicated Example

• Nullspace of is summarized by the basis vector

• So reuse occurs whenever =

➢ i.e., when Δ𝑖 = −Δ𝑗

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

Hit

Miss

i

j

1
-1

c 1
-1

15-745: Locality Analysis 9

Carnegie Mellon

B. Computing Spatial Reuse

• We assume two array elements share the same cache line
iff they differ only in the last dimension

– E.g., share the same row in a 2-dimensional array

– Why is this a reasonable approximation?

– What are its limitations?

• Replace last row of H with zeros, creating Hs

• Find the nullspace of Hs

• Result: vector along which we access the same row

row major order

A row is made up of many cache lines
Large row could be larger than the cache

15-745: Locality Analysis 10

Carnegie Mellon

Computing Spatial Reuse: Example

• H = Hs =

• Nullspace of Hs is summarized by the basis vector

• So spatial reuse occurs whenever =

➢ i.e., whenever i1 = i2, and regardless of the difference between j1 and j2

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit

Miss

0
1

c 0
1

inner or outer loop?

inner

15-745: Locality Analysis 11

Carnegie Mellon

C. Group Reuse (reuse from different static accesses)

• Limit the analysis to consider only accesses with same H

– i.e., index expressions that differ only in their constant terms

• Determine when access same location (temporal) or same row (spatial)

• Only the “leading reference” suffers the bulk of the cache misses

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
H =

i

j

B[j][0]

i

j

B[j+1][0]

15-745: Locality Analysis 12

Carnegie Mellon

D. Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2

for j = 0 to 7

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

Localized: both i and j loops

i

j

B[j+1][0]

for i = 0 to 2

for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

Localized: j loop only

Basis = , 0
1

1
0

0
1

Basis =

15-745: Locality Analysis 13

Carnegie Mellon

Computing Locality

• Example:

• If N is small, then both loops are localized:

– span{ }  span{ , }  span{ }

– i.e., temporal reuse does result in temporal locality

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Reuse Vector Space  Localized Vector Space  Locality Vector Space

i

j

B[j+1][0]

0
1

1
0

1
0

1
0

15-745: Locality Analysis 14

Carnegie Mellon

Computing Locality

• Example:

• If N is large, then only the innermost loop is localized:

– span{ }  span{ }  span{}

– i.e., no temporal locality

Reuse Vector Space  Localized Vector Space  Locality Vector Space

i

j

B[j+1][0]

1
0

0
1

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

15-745: Locality Analysis 15

Carnegie Mellon

Locality Analysis Summary

1. Find data reuse

– Temporal reuse: Compute the nullspace of H

– Spatial reuse: Compute the nullspace of Hs , which is H with last row zeroed out

– If caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected to fit
within the cache

3. Find data locality:

– reuse  localized iteration space  locality

15-745: Locality Analysis 16

Carnegie Mellon

II. Prefetching

Recall: Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

• Loop Splitting

• Software Pipelining

15-745: Prefetching Pointer Structures 17

Carnegie Mellon

Recall: Prefetch Predicate

Example:

15-745: Prefetching Pointer Structures 18

Locality Type Miss Instance Predicate on Iteration Space

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every L iterations
(L elements/cache line)

(i mod L) = 0

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate on Iteration Space

A[i][j]

B[j+1][0]

none
spatial

temporal
none

[]
[]

[ij] =

[ij] = i = 0

(j mod L) = 0

Carnegie Mellon

Recall: Loop Splitting for Prefetching Arrays

• Decompose loops to isolate cache miss instances

– cheaper than inserting IF(Prefetch Predicate) statements

15-745: Prefetching Pointer Structures 19

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0

Spatial (i mod L) = 0

(L elements/cache line)

Loop peeling: split any problematic first (or last) few iterations from the loop
& perform them outside of the loop body

Peel loop i

Unroll loop i by L

i

j

i

j

Carnegie Mellon

Recall: Example Code with Prefetching

15-745: Prefetching Pointer Structures 20

for (i = 0; i < 3; i++)

for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&B[0][0]);

for (j = 0; j < 6; j += 2) {

prefetch(&B[j+1][0]);

prefetch(&B[j+2][0]);

prefetch(&A[0][j]);

}

for (j = 0; j < 94; j += 2) {

prefetch(&B[j+7][0]);

prefetch(&B[j+8][0]);

prefetch(&A[0][j+6]);

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (i = 1; i < 3; i++) {

for (j = 0; j < 6; j += 2)

prefetch(&A[i][j]);

for (j = 0; j < 94; j += 2) {

prefetch(&A[i][j+6]);

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

}

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit

Cache Miss
i = 0

i > 0

Carnegie Mellon

Today: Prefetching for Pointer-Based Structures

• Examples:

– linked lists, trees, graphs, ...

• A common method of building large data structures

– especially in non-numeric programs

• Cache miss behavior is a concern because:

– large data set with respect to the cache size

– temporal locality may be poor

– little spatial locality among consecutively-accessed nodes

Goal:

• Automatic compiler-based prefetching for pointer-based data structures

2115-745: Prefetching Pointer Structures

Carnegie Mellon

Scheduling Prefetches for Pointer-Based Data Structures

22

ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency

• thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0

while (p){

work(p ->data);

p = p->next ;

}

loa d *p here

Our Goal: fully hide latency

– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

15-745: Prefetching Pointer Structures

Carnegie Mellon

Performance without Prefetching

23

Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li
Wi

Li+2
Wi+2

Li+3 Wi+3

Time

while (p){

work(p ->data);

p = p->next;

}

computation rate = 1 / (L+W)

15-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(p i->next)

while (p){

pf(p->next);

work(p ->data);

p = p->next;

}

Li

Li+1

Li+2

Li+3

visiting

Time

• Comp uta tio n is overla p ped with memory a c c esses

work(nk)Wk

Lk load ing n k

da ta d epend enc e

Prefetching One Node Ahead

24

• Computation is overlapped with memory accesses

computation rate = 1/L

15-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(p i->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni
Wi

Wi+2

Wi+3

while (p){

pf(p->next->next->next);

work(p ->data);

p = p->next;

}

L

Prefetching Three Nodes Ahead

2515-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching Three Nodes Ahead

26

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(p i->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni
Wi

Wi+2

Wi+3

while (p){

pf(p->next->next->next);

work(p ->data);

p = p->next;

}

L

q=p->next->next;
while(q) {

pf(q=q->next);

pf(q=q->next);

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L

15-745: Prefetching Pointer Structures

Carnegie Mellon

Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2
Wi+2

Li+3
Wi+3

while (p){

pf(&ni+3);

work(p ->data);

p = p->next;

}

pf(&ni+3)

visiting

Time

 achieves the fastest possible computa tion rate of 1/ W

pre fetc h

Our Goal: Fully Hide Latency

27

• achieves the fastest possible computation rate of 1/W

15-745: Prefetching Pointer Structures

Carnegie Mellon

Overcoming the Pointer-Chasing Problem

Key:

• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Three Algorithms:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

– Data-Linearization Prefetching

2815-745: Prefetching Pointer Structures

Overcoming the Pointer-Chasing Problem

Key:

Our proposals:

use existing po inter(s) in n i to a pproximate &n i+d

a dd new po inter(s) to n i to a pproximate &n i+d

c ompute &n i+d directly from &n i (no ptr. d eref.)

 ni needs to know &ni+d without referencing the d-1 intermediate nodes

ni ni+d

an existing p ointer

ni ni+d

a new p ointer

A
&n i &n i+d

A=Add ress ge nera ting func tion

ni ni+d

Greedy Prefetching

History-Pointer Prefetching

Data-Linearization Prefetching

Carnegie Mellon

• Prefetch all neighboring nodes (simplified definition)

– only one will be followed by the immediate control flow

– hopefully, we will visit other neighbors later

• Reasonably effective in practice

• However, little control over the prefetching distance

29

1

2

missmissmiss partial
miss

hit

3

4

8 10

6

12 14

5

9 11

7

13 15

preorder(treeNode * t){

if (t != NULL){

pf(t->left);

pf(t->right);

process(t->data);

preorder(t->left);

preorder(t->right);

}

}

Greedy Prefetching

15-745: Prefetching Pointer Structures

Carnegie Mellon

History-Pointer Prefetching

• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances

30

1

2
4

8
9

5

10
11

3
6

preorder

15-745: Prefetching Pointer Structures

8 9 11 15

1

2 3

4 5 7

10 12 13 14

3

11

10

6

12

5

9

youngest

oldest

FIFO (d=3)

6

existing history-pointer

history-pointer being added

6 currently visiting

Carnegie Mellon

Data-Linearization Prefetching

• No pointer dereferences are required

• Map nodes close in the traversal to contiguous memory

31

8 9 11 15

1

2 3

4 5 6 7

10 12 13 14

preorder

traversal

1 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15

15-745: Prefetching Pointer Structures

Carnegie Mellon

Summary of Prefetching Algorithms for Pointer Structures

32

Greedy History-Pointer Data-Linearization

Control over Prefetching
Distance

little more precise more precise

Applicability to Pointer-
Based Data Structures

any revisited; changes
only slowly

must have a major
traversal order; changes

only slowly

Overhead in Preparing
Prefetch Addresses

none space + time none in practice

Ease of Implementation relatively
straightforward

more difficult more difficulty

15-745: Prefetching Pointer Structures

Carnegie Mellon

Summary of Prefetching Algorithms for Pointer Structures

• Greedy prefetching is the most widely applicable algorithm

33

Greedy History-Pointer Data-Linearization

Control over Prefetching
Distance

little more precise more precise

Applicability to Pointer-
Based Data Structures

any revisited; changes
only slowly

must have a major
traversal order; changes

only slowly

Overhead in Preparing
Prefetch Addresses

none space + time none in practice

Ease of Implementation relatively
straightforward

more difficult more difficulty

15-745: Prefetching Pointer Structures

Carnegie Mellon

Today’s Class: Locality Analysis and Prefetching

3415-745: Locality Analysis and Prefetching

Friday’s Class

• Array Dependence Analysis & Parallelization
– ALSU 11.6

I. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

II. Prefetching Pointer-Based Structures

