Lecture 23:

Array Dependence Analysis & Parallelization

- I. Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

[ALSU 11.6, 11.7.8]

I. Data Dependence

Let S_i precede S_i in execution.

- Flow (true) dependence: S_i computes a data value that S_j uses. $S_i \ \delta^t S_j$ E.g., $S_1 \ \delta^t S_2$ and $S_2 \ \delta^t S_4$
- Anti dependence: S_i uses a data value that S_j overwrites. S_i $\delta^a S_j$ E.g., S₂ $\delta^a S_3$
- Output dependence: S_i computes a data value that S_j overwrites. $S_i \ \delta^o S_j$ E.g., $S_1 \ \delta^o S_3$ and $S_3 \ \delta^o S_4$
- Input dependence: S_i uses a data value that S_i also uses.
 - $\mathbf{S_i} \ \mathbf{\delta^i} \ \mathbf{S_j}$ E.g., $\mathbf{S_3} \ \mathbf{\delta^i} \ \mathbf{S_4}$

(Unlike the other 3, it is typically safe to execute S_i and S_i in parallel)

<i>S</i> ₁ :	а	=	1;	•	
<i>S</i> ₂ :	b	=	а	+	2;
<i>S</i> ₃ :	a	=	С	-	d;
			•		
<i>S</i> ₄ :	a	=	b/	'c;	;

Data Dependence Graph

 Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.

$$S_1: a = 1;$$

 $S_2: b = a + 2;$
 $S_3: a = c - d;$
 $...$
 $S_4: a = b/c;$

Array Data Dependence: Example 1

- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ uses.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0.
 The dependence direction is =.

$$\mathbf{S}_1 \, \boldsymbol{\delta}_{=}^t \, \mathbf{S}_2 \quad \text{or} \quad \mathbf{S}_1 \, \boldsymbol{\delta}_0^t \, \mathbf{S}_2$$

Array Data Dependence: Example 2

- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ uses.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

$$\mathbf{S}_1 \, \mathbf{\delta}_{<}^t \, \mathbf{S}_2 \quad \text{or} \quad \mathbf{S}_1 \, \mathbf{\delta}_1^t \, \mathbf{S}_2$$

Example 3

- There is an instance of S₂ that precedes an instance of S₁ in execution and S₂ uses data that S₁ overwrites.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1. The direction is positive (<).

 $S_2 \ \delta^a_< \ S_1$ or $S_2 \ \delta^a_1 \ S_1$

• Are you sure you know why it is $S_2 \delta_{<}^a S_1$ even though S_1 appears before S_2 in the code?

Example 4: 2D Iteration Space

- do i = 2, 4 do j = 2, 4 S: A[i,j] = A[i-1,j+1] end do end do
- An instance of S precedes another instance of S and S produces data that S uses.
- S is both source and sink.
- The dependence is loopcarried.
- The dependence distance is (1,-1).
 - **S** $\delta_{<,>}^t$ **S** or **S** $\delta_{1,-1}^t$ **S**

Carnegie Mellon

II. Dependence Testing: Formulation

Consider the following perfect nest of depth d: "perfect" means step=1

Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \le \vec{k} \le \vec{j} \le \vec{U}$ and:

and
$$f_1(\vec{k}) = g_1(\vec{j})$$

and
$$f_2(\vec{k}) = g_2(\vec{j})$$

$$\vdots$$

and
$$f_m(\vec{k}) = g_m(\vec{j})$$

• That is:

$$f_{1}(\vec{k}) - g_{1}(\vec{j}) = 0$$

and
$$f_{2}(\vec{k}) - g_{2}(\vec{j}) = 0$$

:
and
$$f_{m}(\vec{k}) - g_{m}(\vec{j}) = 0$$

Problem Formulation - Example

- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 1$?
- Answer: yes; $i_1=2 \& i_2=3$ and $i_1=3 \& i_2=4$.
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = 1$.
- The dependence direction vector is sign(1) = <.

Problem Formulation - Example

```
do i = 2, 4

S_1: a[i] = b[i] + c[i]

S_2: d[i] = a[i+1]

end do
```

- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 + 1$?
- Answer: yes; i₁=3 & i₂=2 and i₁=4 & i₂=3. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = -1$.
- The dependence direction vector is sign(-1) = >.
- Is this possible? Yes: As an antidependence, not a true dependence

Problem Formulation - Example

```
do i = 1, 10

S_1: a[2*i] = b[i] + c[i]

S_2: d[i] = a[2*i+1]

end do
```

- Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that $2*i_1 = 2*i_2 + 1$?
- Answer: no; $2*i_1$ is even & $2*i_2+1$ is odd
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors kand j that satisfies these constraints is called a dependence tester.

do
$$I_1 = L_1, U_1$$

do $I_2 = L_2, U_2$
 \vdots
do $I_d = L_d, U_d$
 $a(f_1(\vec{I}), f_2(\vec{I}), \dots, f_m(\vec{I})) = \dots$
 $\dots = a(g_1(\vec{I}), g_2(\vec{I}), \dots, g_m(\vec{I}))$
enddo
 \vdots
enddo
enddo
enddo

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j} \vec{k}$.
- The dependence direction vector is give by sign($\vec{j} \vec{k}$).
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

III. Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

 Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$A(\cdots, b^{*}i + c_{1}, \cdots) = \cdots$$
$$\cdots = A(\cdots, b^{*}i + c_{2}, \cdots)$$

• The dependence problem: does there exist i_1 and i_2 , such that $L_i \le i_1 \le i_2 \le U_i$ and such that $b^*i_1 + c_1 = b^*i_2 + c_2$? i.e.,

$$i_2 - i_1 = \frac{c_1 - c_2}{b}$$
?

- There is integer solution if and only if $\frac{c_1 c_2}{b}$ is integer.
- The dependence distance is $d = \frac{c_1 c_2}{b}$ if $|d| \le U_i L_i$
- $d > 0 \implies$ true dependence
 - $d = 0 \implies$ loop independent dependence
 - $d < 0 \implies$ anti dependence

Lamport's Test - Example do i = 1, n $b^*i_1 + c_1 = b^*i_2 + c_2$ do j = 1, n S: a[i,j] = a[i-1,j+1]end do end do • $j_1 = j_2 + 1?$ • $i_1 = i_2 - 1?$ b = 1; c₁ = 0; c₂ = -1 b = 1; c₁ = 0; c₂ = 1 $\frac{c_1-c_2}{b}=-1$ $\frac{c_1-c_2}{b}=1$ There is dependence. There is dependence. Distance (j) is -1. Distance (i) is 1. **S** $\delta_{<>}^t$ **S** or **S** $\delta_{1,-1}^t$ **S**

Carnegie Mellon

Lamport's Test – Another Example

<u>GCD Test</u>

• Given the following equation:

 $\sum_{i=1}^{n} a_i x_i = c$ where a_i and c are integers

an integer solution exists if and only if:

 $gcd(a_1, a_2, ..., a_n)$ divides *c*

- Problems:
 - ignores loop bounds
 - gives no information on distance or direction of dependence
 - often gcd(.....) is 1 which always divides c, resulting in false dependences

GCD Test - Example

do i = 1, 10

$$S_1: a[2*i] = b[i] + c[i]$$

 $S_2: d[i] = a[2*i-1]$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1\leq i_1\leq i_2\leq 10$ and such that:

$$2*i_1 = 2*i_2 - 1?$$

or
 $2*i_2 - 2*i_1 = 1?$

- There will be an integer solution if and only if gcd(2,-2) divides 1.
- This is not the case, and hence, there is no dependence!

GCD Test: Another Example

```
do i = 1, 10

S_1: a[i] = b[i] + c[i]

S_2: d[i] = a[i-100]

end do
```

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1$, $i_2 \le 10$ and such that:

```
i_1 = i_2 - 100?
or
i_2 - i_1 = 100?
```

- There will be an integer solution if and only if gcd(1,-1) divides 100.
- This is the case, and hence, there is dependence! Or is there?

No: check loop bounds. Shows a limitation of GCD.

Dependence Testing: Complications

• Unknown loop bounds:

```
do i = 1, N
S<sub>1</sub>: a[i] = a[i+10]
end do
```

What is the relationship between N and 10?

• Triangular loops:

Must impose j < i as an additional constraint.

More Complications

• User variables:

```
do i = 1, 10
S<sub>1</sub>: a[i] = a[i+k]
end do
```

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., loop bounds normalization).

do i = L, H

$$S_1: a[i] = a[i-1]$$

end do
 \downarrow
do i = 1, H-L
 $S_1: a[i+L] = a[i+L-1]$
end do

Carnegie Mellon

More Complications: Scalars

do i = 1, N $S_1: x = a[i]$ $S_2: b[i] = x$ end do	\Rightarrow	do i = 1, N S_1 : x[i] = a[i] S_2 : b[i] = x[i] end do
j = N-1 do i = 1, N $S_1: a[i] = a[j]$ $S_2: j = j - 1$	\Rightarrow	do i = 1, N S ₁ : a[i] = a[N-i]
end do		end do

privatization

IV. Loop Parallelization

 A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

Carnegie Mellon

Loop Parallelization

• A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

with a non "=" direction do i = 2, n-1 carries dependence! do j = 2, m-1 a(i, j) = $\delta_{=,=}^{t}$ loop-independent = a(i, j)b(i, j) = ... $\delta_{=,<}^{t}$ carried by loop j = b(i, j-1)... c(i, j) = $\delta_{<,=}^{t}$ carried by loop i = c(i-1, j)... end do end do

Outermost loop

Carnegie Mellon

Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

Loop Parallelization - Example

- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel!
- Outer loop parallelism

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel!
- Inner loop parallelism (Vectorization, SIMD)

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel! Why?
- Inner loop parallelism

V. Loop Interchange

Recall: Used to improve spatial locality

Assume row major order, N large, 4 elements per cache line

15-745: Parallelization

Loop Interchange

Can also be used to improve the granularity of parallelism!

δ^t<,=

Inner loop parallelism

do j = 1, n do i = 1, n a[i,j] = b[i,j] c[i,j] = a[i-1,j] end do end do

δ^t=,<

Outer loop parallelism

15-745: Parallelization

do j = 1,n do i = 1,n ... a[i,j] ... end do end do

Focus only on true dependences (i.e., lexicographically positive dependences)

do i = 1,n do j = 1,n ... a[i,j] ... end do end do

When is loop interchange legal?

when the "interchanged" dependences remain lexiographically positive!

Carnegie Mellon

Today's Class: Array Dependence Analysis & Parallelization

- I. Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

Monday's Class

• Domain Specific Languages

Warning: Project Milestone Reports are due in one week

Carnegie Mellon