
Carnegie Mellon

Lecture 3

Local Optimizations, Intro to SSA

I. Basic blocks & Flow graphs

II. Abstraction 1: DAG

III. Abstraction 2: Value numbering

IV. Intro to SSA

Phillip B. Gibbons 15-745: Local Optimizations, Intro to SSA 1

ALSU 8.4-8.5, 6.2.4

Carnegie Mellon

I. Basic Blocks & Flow Graphs

Basic block = a sequence of 3-address statements

– only the first statement can be reached from outside the block
(no branches into middle of block)

– all the statements are executed consecutively if the first one is
(no branches out or halts except perhaps at end of block)

– We require basic blocks to be maximal, i.e., they cannot be made larger
without violating the conditions

Flow graph

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in some execution

– Either first instruction of Bj is target of a goto at end of Bi

– Or, Bj physically follows Bi, which does not end in an unconditional goto.

15-745: Local Optimizations 2

Carnegie Mellon

Partitioning into Basic Blocks

Identify the leader of each basic block

• First instruction

• Any target of a jump

• Any instruction immediately following a jump

Basic block starts at leader & ends at instruction
immediately before a leader (or the last
instruction)

15-745: Local Optimizations 3

ALSU 8.4

A[t2] := t7

A[t6] := t3

L3: j := j+1

goto L4

L2: i := i-1

goto L5

L1:

i := n-1

L5: if i<1 goto L1

j := 1

L4: if j>i goto L2

t1 := j-1

t2 := 4*t1

t3 := A[t2]

t6 := 4*j

t7 := A[t6]

if t3<=t7 goto L3

Carnegie Mellon

Flow Graph

15-745: Local Optimizations 4

A[t2] := t7

A[t6] := t3

L3: j := j+1

goto L4

L2: i := i-1

goto L5

L1:

i := n-1

L5: if i<1 goto L1

j := 1

L4: if j>i goto L2

t1 := j-1

t2 := 4*t1

t3 := A[t2]

t6 := 4*j

t7 := A[t6]

if t3<=t7 goto L3

Carnegie Mellon

II. Local Optimizations (within basic block)

• Common subexpression elimination

– array expressions

– field access in records

– access to parameters

15-745: Local Optimizations 5

Carnegie Mellon

Graph Abstractions

Example 1:

• grammar (for bottom-up parsing): E -> E + T | E – T | T, T -> T*F | F, F -> (E) | id

• expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 6

1.a

2.a

3.b 4.c

5.-

6.*

7.+

8.b 9.c

10.- 11.d

12.*

13.+

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*

9.+

Parse tree Expression DAG
ALSU 4.5 ALSU 6.1.1

Carnegie Mellon

Graph Abstractions

Expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 7

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*

9.+
Optimized code:

t1 = b - c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4

Carnegie Mellon

How well do DAGs hold up across statements?

Example 2:

a = b+c;

b = a-d;

c = b+c;

d = a-d;

15-745: Local Optimizations 8

b c

+

-

a d

b

+ c

,d

Is this optimized code correct?

a = b+c;

d = a-d;

c = d+c;

Depends on whether b is
live on exit from the block

Carnegie Mellon

Critique of DAGs

• Cause of problems

– Assignment statements

– Value of variable depends on TIME

• How to fix problem?

– build graph in order of execution

– attach variable name to latest value

• Final graph created is not very interesting

– Key: variable->value mapping across time

– loses appeal of abstraction

15-745: Local Optimizations 9

Carnegie Mellon

III. Value Number: Another Abstraction

• John Cocke & Jack Schwartz in unpublished book: “Programming Languages and
their Compilers”, (1970)

• More explicit with respect to VALUES, and TIME

• each value has its own “number”

– common subexpression means same value number

• var2value: current map of variable to value

– used to determine the value number of current expression

r1 + r2 => var2value(r1)+var2value(r2)

15-745: Local Optimizations 10

Variables Values
(dynamic)(static)

var2value
(current)

ALSU 6.1.2

Carnegie Mellon

Value Numbering: Expression Example

Expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 11

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*

9.+
Optimized code:

t4 = b - c

t5 = a * t4

t6 = a + t5

t8 = t4 * d

t9 = t6 + t8

Carnegie Mellon

Value Numbering Algorithm
Data structure:

VALUES = Table of

expression /* [OP, valnum1, valnum2] */

var /* name of variable currently holding expr */

For each instruction (dst = src1 OP src2) in execution order

valnum1=var2value(src1); valnum2=var2value(src2)

IF [OP, valnum1, valnum2] is in VALUES

v = the index of expression

Replace instruction with: dst = VALUES[v].var

ELSE

Add

expression = [OP, valnum1, valnum2]

var = dst

to VALUES

v = index of new entry; tv is new temporary for v

Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var

dst = tv

set_var2value (dst, v)

15-745: Local Optimizations 12

Carnegie Mellon

More Details

• What are the initial values of the variables?

– values at beginning of the basic block

• Possible implementations:

– Initialization: create “initial values” for all variables

– Or dynamically create them as they are used

• Implementation of VALUES and var2value: hash tables

15-745: Local Optimizations 13

Carnegie Mellon

Value Numbering: Basic Block Example

a = b+c

b = a-d

c = b+c

d = a-d

15-745: Local Optimizations 14

1.b 2.c

+

-

4 3.d

5

+ 6

t4 = b + c

a = t4

t5 = t4 - d

b = t5

t6 = t5 + c

c = t6

d = t5

Q: Assigning to a temporary and then copying
to the destination increases the number of
instructions—so why do it?

A: If dst is overwritten later, would lose
opportunity to eliminate common subexpression
since no variable would hold the result

// dst =

VALUES[v].var

// tv = VALUES[valnum1].var

OP VALUES[valnum2].var

new
Value

Numbers

// dst = tv

[-,4,3] = VALUES[5]

Carnegie Mellon

Question

• How do you extend value numbering to constant folding?

a = 1

b = 2

c = a+b

15-745: Local Optimizations 15

Answer: Can add a field to the VALUES table indicating
when an expression is a constant and what its value is

Carnegie Mellon

DAGs vs. Value Numbering

• Comparisons of two abstractions

– DAGs

– Value numbering

• Value numbering

– VALUE: distinguish between variables and VALUES

– TIME

• Interpretation of instructions in order of execution

• Keep dynamic state information

15-745: Local Optimizations 16

Carnegie Mellon

IV. Intro to SSA

Global Optimizations: look beyond the basic block

• Global versions of local optimizations

– global common subexpression elimination

– global constant propagation

– dead code elimination

• Loop optimizations

– reduce code to be executed in each iteration

– code motion

– induction variable elimination

• Other control structures

– Code hoisting: eliminates copies of identical code on parallel paths in a flow
graph to reduce code size.

15-745: Intro to SSA 17

We will cover these
optimizations

in later lectures

Carnegie Mellon

Recurring Optimization Theme: Where Is a Variable Defined or Used?

• Example: Loop-Invariant Code Motion

– Are B, C, and D only defined outside the loop?

– Other definitions of A inside the loop?

– Uses of A inside the loop?

• Example: Copy Propagation

– For a given use of X:

• Are all reaching definitions of X:

– copies from same variable: e.g., X = Y

• Where Y is not redefined since that copy?

– If so, substitute use of X with use of Y

• It would be nice if we could traverse directly between related uses and def’s

– this would enable a form of sparse code analysis (skip over “don’t care” cases)

15-745: Intro to SSA 18

…

A = B + C

E = A + D

…

X = Y

W = X + Z

X = YX = Y

Carnegie Mellon

Appearances of Same Variable Name May Be Unrelated

• The values in reused storage locations may be provably independent

– in which case the compiler can optimize them as separate values

• Compiler could use renaming to make these different versions more explicit

15-745: Intro to SSA 19

X1 = A2 + 1

Y2 = X1 + B

X2 = F2 + 7

C2 = X2 + D

F = 3F = 2

X1 = A2 + 1

Y2 = X1 + B

X2 = F2 + 7

C2 = X2 + D

Carnegie Mellon

Definition-Use and Use-Definition Chains

• Definition-Use (DU) Chains:

– for a given definition of a variable X, what are all of its uses?

• Use-Definition (UD) Chains:

– for a given use of a variable X, what are all of the reaching definitions of X?

15-745: Intro to SSA 20

X1 = A2 + 1

Y2 = X1 + B

X2 = F2 + 7

C2 = X2 + D

F = 3F = 2

X1 = A2 + 1

Y2 = X1 + B

X2 = F2 + 7

C2 = X2 + D

Carnegie Mellon

15-745: Intro to SSA 21

Unfortunately DU and UD Chains Can Be Expensive

foo(int i, int j) {

…

switch (i) {

case 0: x=3;break;

case 1: x=1; break;

case 2: x=6; break;

case 3: x=7; break;

default: x = 11;

}

switch (j) {

case 0: y=x+7; break;

case 1: y=x+4; break;

case 2: y=x-2; break;

case 3: y=x+1; break;

default: y=x+9;

}

…

In general,
N defs
M uses
 O(NM) space and time

One solution: limit each variable to ONE definition site

Carnegie Mellon

15-745: Intro to SSA 22

Unfortunately DU and UD Chains Can Be Expensive

foo(int i, int j) {

…

switch (i) {

case 0: x=3; break;

case 1: x=1; break;

case 2: x=6;

case 3: x=7;

default: x = 11;

}

x1 is one of the above x’s

switch (j) {

case 0: y=x1+7;

case 1: y=x1+4;

case 2: y=x1-2;

case 3: y=x1+1;

default: y=x1+9;

}

…
One solution: limit each variable to ONE definition site

Carnegie Mellon

15-745: Intro to SSA 23

Static Single Assignment (SSA)

• Static single assignment is an IR where every variable is assigned a value at most
once in the program text

• Easy for a basic block (reminiscent of Value Numbering):

– Visit each instruction in program order:

• LHS: assign to a fresh version of the variable

• RHS: use the most recent version of each variable

a = x + y

b = a + x

a = b + 2

c = y + 1

a = c + a

a1 = x + y

b1 = a1 + x

a2 = b1 + 2

c1 = y + 1

a3 = c1 + a2

Carnegie Mellon

15-745: Intro to SSA 24

a1 = x + y

b1 = a1 + x

What about Joins in the CFG?

a2 = b + 2

c2 = y + 1

c = 12

if (i) {

a = x + y

b = a + x

} else {

a = b + 2

c = y + 1

}

a = c + a

c1 = 12

if (i)

a4 = c? + a?

 Use a notational convention (fiction): a  function

Carnegie Mellon

Merging at Joins: the  function

15-745: Intro to SSA 25

a1 = x + y

b1 = a1 + x

a2 = b + 2

c2 = y + 1

c1 = 12

if (i)

a3 = (a1,a2)

c3 = (c1,c2)

b2 = (b1,b)

a4 = c3 + a3

a1 = x + y

b1 = a1 + x

a2 = b + 2

c2 = y + 1

c1 = 12

if (i)

a4 = c? + a?

Carnegie Mellon

15-745: Intro to SSA 26

The  function

• merges multiple definitions along multiple control paths into a single definition.

• At a basic block with p predecessors, there are p arguments to the  function.

xnew = (x1, x2, x3, … , xp)

• How do we choose which xi to use?

– We don’t really care!

• How do we emit code for this?

Carnegie Mellon

15-745: Intro to SSA 27

“Implementing” 

a2 = b + 2

c2 = y + 1

a3 = a2

c3 = c2

c1 = 12

if (i)

a1 = x + y

b1 = a1 + x

a3 = a1

c3 = c1

a3 = (a1,a2)

c3 = (c1,c2)

a4 = c3 + a3Never really done
this way, but could be

Carnegie Mellon

15-745: Intro to SSA 28

Trivial SSA

• Each assignment generates a fresh variable

• At each join point insert  functions for all live variables

y = x y = 2

z = y + x

x = 1

y1 = x1 y2 = 2

x2 = (x1,x1)

y3 = (y1,y2)

z1 = y3 + x2

x1 = 1

In general, too many  functions inserted

Carnegie Mellon

15-745: Intro to SSA 29

Minimal SSA

• Each assignment generates a fresh variable

• At each join point insert  functions for all live variables with multiple outstanding defs

y = x y = 2

z = y + x

x = 1

y1 = x1 y2 = 2

x2 = (x1,x1)

y3 = (y1,y2)

z1 = y3 + x1

x1 = 1

Carnegie Mellon

Today’s Class

15-745: Local Optimizations, Intro to SSA 30

I. Basic blocks & Flow graphs

II. Abstraction 1: DAG

III. Abstraction 2: Value numbering

IV. Intro to SSA

Wednesday’s Class

• LLVM Compiler: Further Details

– Play around a bit with LLVM before class

