
Carnegie Mellon

Lecture 6

Foundations of Data Flow Analysis

I. Meet operator

II. Transfer functions

III. Correctness, Precision, Convergence

IV. Efficiency

Phillip B. Gibbons 15-745: Foundations of Data Flow 1

ALSU 9.3

Carnegie Mellon

• A definition d reaches a point p if

– there exists a path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

• A basic block b can

– generate new definitions: Gen[b]

• set of definitions in b that reach end of b

– propagate incoming definitions: in[b] - Kill[b],

• where Kill[b]= set of defs killed by defs in b

• Forward analysis

– transfer function for block b:
out[b] = Gen[b] U (in[b]-Kill[b])

• meet operator:

in[b] = out[p1] U out[p2] U ... U out[pn], where

p1, ..., pn are all the predecessors of b

Review: Reaching Definitions

15-745: Foundations of Data Flow 2

L1: if input()GOTO L2

d0: a = x

L2: … d1: b = a

d2: a = y

GOTO L1 d2 reaches
this point?

yes

Carnegie Mellon

• A variable v is live at point p if

– the value of v is used along some path in the flow graph starting at p.

• A basic block b can

– generate live variables: Use[b]

• set of locally exposed uses in b

– propagate incoming live variables: out[b] - Def[b],

• where Def[b]= set of variables defined in b.b.

• Backward analysis

– transfer function for block b:
in[b] = Use[b] U (out[b]-Def[b])

• meet operator:

out[b] = in[s1] U in[s2] U ... U in[sn], where

s1, ..., sn are all successors of b

d0: v = 3

d1: x = 10

d2: y = 1

if e

Review: Live Variable Analysis

15-745: Foundations of Data Flow 3

y = 2

v = 2

z = x

y = v

yes

v live at
this point?

Carnegie Mellon

Review: Data Flow Analysis Framework

15-745: Foundations of Data Flow 4

Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] =  out[pred(b)]

backward:
in[b] = fb(out[b])
out[b] =  in[succ(b)]

Transfer function fb(x) = Genb  (x –Killb) fb(x) = Useb  (x -Defb)

Meet Operation ()  

Boundary Condition out[entry] =  in[exit] = 

Initial interior points out[b] =  in[b] = 

Other Data Flow Analysis problems fit into this general framework,
e.g., Available Expressions & Constant Propagation (Lecture 7)

Carnegie Mellon

A Unified Framework

• Data flow problems are defined by

• Domain of values: V

• Meet operator (V  V  V), initial value

• A set of transfer functions (V  V)

• Usefulness of unified framework

• To answer questions such as
correctness, precision, convergence, speed of convergence
for a family of problems

– If meet operators and transfer functions have properties X, then we know Y
about the above.

• Reuse code

15-745: Foundations of Data Flow 5

Carnegie Mellon

Overview: A Check List for Data Flow Problems

• Semi-lattice

– set of values

– meet operator

– top, bottom

– finite descending chain?

• Transfer functions

– function of each basic block

– monotone

– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)

– visit order: rPostOrder

– depth of the graph

15-745: Foundations of Data Flow 6

Carnegie Mellon

I. Meet Operator

• Properties of the meet operator

• commutative: x  y = y  x

• idempotent: x  x = x

• associative: x  (y  z) = (x  y)  z

• there is a Top element T such that x  T = x

• Meet operator defines a partial ordering on values

• x ≤ y if and only if x  y = x

– Transitivity: if x ≤ y and y ≤ z then x ≤ z

– Antisymmetry: if x ≤ y and y ≤ x then x = y

– Reflexivity: x ≤ x

15-745: Foundations of Data Flow 7

x y

x  y

T = (1,1)

(1,0) (0,1)

(0,0)

Partial Order

Meet Operator:
Elementwise-min

Note: x < y is depicted as
y → x in diagram

Note: typically show only
minimal (i.e., transitively

reduced) set of edges.
[not the dashed edge above]

Carnegie Mellon

Partial Order

• Top and Bottom elements

• Top T such that: x  T = x

• Bottom  such that: x   = 

• Values and meet operator in a data flow problem define a semi-lattice:

– there exists a T, but not necessarily a .

• x, y are ordered: x ≤ y then x  y = x

• what if x and y are not ordered?

• x  y ≤ x, x  y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x  y

15-745: Foundations of Data Flow 8

T = (1,1)

(1,0) (0,1)

 = (0,0)

Meet Operator:
Elementwise-min

{d2}{d1}

T = {d1,d2}

 = {}

Meet Operator?
UnionIntersection

{d2}{d1}

 = {d1,d2}

T = {}

Meet Operator?

Note: x < y is depicted as
y → x in diagram

Carnegie Mellon

One vs. All Variables/Definitions

• Lattice for each variable: e.g. intersection

• Lattice for three variables for intersection:

15-745: Foundations of Data Flow 9

1

0

x100 x010

x101 x110

x001

x011

x000

x111

How many variables?
Meet operator?

3
union

Carnegie Mellon

Descending Chain

• Definition

• The height of a lattice is the largest number of > relations that will fit in a
descending chain.

x0 > x1 > x2 > …

• Height of values in reaching definitions?

• Important property: finite descending chain

– Can an infinite lattice have
a finite descending chain?

– Example: Constant Propagation/Folding

• To determine if an integer variable is a constant

– Domain of values:

• undef, ... -1, 0, 1, 2, ..., not-a-constant

15-745: Foundations of Data Flow 10

Height=n, where n is the number of definitions

yes

… …

Carnegie Mellon

II. Transfer Functions

• Basic Properties f: V  V

– Has an identity function

• There exists an f such that f (x) = x, for all x.

– Closed under composition

• if f1, f2  F, then f1  f2  F

15-745: Foundations of Data Flow 11

e.g., out[b] = Gen[b] U (in[b]-Kill[b])

Carnegie Mellon

Monotonicity

• A framework (F, V, ) is monotone if and only if

• x ≤ y implies f(x) ≤ f(y)

• i.e. a “smaller or equal” input to the same function will always give a
“smaller or equal” output

• Equivalently, a framework (F, V, ) is monotone if and only if

• f(x  y) ≤ f(x)  f(y)

• i.e. merge input, then apply f is small than or equal to apply the transfer
function individually and then merge the result

15-745: Foundations of Data Flow 12

Transfer function f: V  V
e.g., out[b] = Gen[b] U (in[b]-Kill[b])

Carnegie Mellon

Example: Reaching Definitions is Monotone

• Reaching definitions: f(x) = Gen  (x - Kill),  = 

– Definition 1: x ≤ y implies f(x) ≤ f(y)

• x ≤ y implies (x - Kill) ≤ (y - Kill)
implies Gen  (x - Kill) ≤ Gen  (y - Kill)

– Definition 2: f(x  y) ≤ f(x)  f(y)

• (Gen  ((x  y) - Kill))
= (Gen  (x - Kill))  (Gen  (y - Kill))

• Note: Monotone framework does not mean that f(x) ≤ x

• E.g., consider reaching definitions, where d1 and d2 define the same variable

• Then the transfer function f(x) for a basic block that defines only d1 has

Gen = {d1} and Kill = {d2}

• Let x= {d2}. Then f(x) = {d1} which is unordered w.r.t. x= {d2}.

• If input(second iteration) ≤ input(first iteration)

• result(second iteration) ≤ result(first iteration)

15-745: Foundations of Data Flow 13

{d2}

Meet Operator:
Union

{d1}

{d1,d2}

T = {}

[𝑥 < 𝑦 iff 𝑦 → 𝑥]
Union: 𝑦 is a subset of 𝑥

Carnegie Mellon

Distributivity

• A framework (F, V, ) is distributive if and only if

• f(x  y) = f(x)  f(y)

• i.e., merge input, then apply f is equal to apply the transfer function
individually then merge result

• Is Reaching Definitions distributive?

• Is Constant Propagation distributive?

15-745: Foundations of Data Flow 14

a = 2

b = 3

a = 3

b = 2

c = a + b
… …

yes

no

Consider c:
f(x)  f(y) =

f(x  y) = NAC
5

Carnegie Mellon

III. Data Flow Analysis

• Definition

– Let f1, ..., fm :  F, where fi is the transfer function for node i

• fp = fnk
 …  fn1

, where p is a path through nodes n1, ..., nk

• fp = identify function if p is an empty path

• Perfect data flow answer:

– For each node n:

 fpi
(T), for all possibly executed paths pi in the program reaching n.

• In general: Determining all possibly executed paths is undecidable

15-745: Foundations of Data Flow 15

x = 0 x = 1

if f(y) >= 0

If f(y) is always non-negative
then right path never taken

Carnegie Mellon

Meet-Over-Paths (MOP)

• Err in the conservative direction

• Meet-Over-Paths (MOP):

• For each node n:

MOP(n) =  fpi
(T), for all paths pi in data flow graph reaching n

• a path exists as long there is an edge in the code

• MOP = Perfect-Solution  Solution-to-Unexecuted-Paths

• MOP ≤ Perfect-Solution

• Considers more paths than necessary, hence solution is conservative

• Meet = union: Definition may reach; Variable may be live

• Meet = intersection: Expression is always available even when consider extra paths

• Considering too few paths (> Perfect-Solution) would not be safe!

• Desirable solution: as close to MOP as possible

15-745: Foundations of Data Flow 16

Carnegie Mellon

Example: MOP considers more paths than Perfect

15-745: Foundations of Data Flow 17

if x == 1B1

B2 B3

if x == 0B4

B5 B6

B7

Assume x ∈ 0,1 and B2 & B3 do not update x

Perfect considers only which 2 paths?

MOP also considers which other
(unexecuted) paths?

B1-B2-B4-B6-B7 (i.e., x=1)
B1-B3-B4-B5-B7 (i.e., x=0)

B1-B2-B4-B5-B7
B1-B3-B4-B6-B7

What changes if x ∈ 0,1,2 ?

B1-B3-B4-B6-B7 is also
considered by Perfect

Carnegie Mellon

Solving Data Flow Equations

• Framework (F, V, ) defines set of equations relating in[b]’s and out[b]’s

• Any solution satisfying equations = Fixed Point Solution (FP)

• Iterative algorithm for forward analysis (backward analysis case is symmetric)

• initializes out[b] to T for all b

• if framework is monotone & algorithm converges, then it computes
Maximum Fixed Point (MFP):

• MFP is the largest of all solutions to equations (in any other solution, the values of
IN[b] and OUT[b] are ≤ the corresponding values of the MFP)

• Properties:

• FP ≤ MFP ≤ MOP ≤ Perfect-solution

• FP, MFP are safe

• If monotone & converges, then in[b] ≤ MOP[b]

15-745: Foundations of Data Flow 18

Carnegie Mellon

Solving Data Flow Equations

• Example: Reaching definitions

• Values = {subsets of definitions}. Init out[b]= {}

• Meet operator: in[b] =  out[p], for all predecessors p of b

• Transfer functions: out[b] = genb  (in[b] - killb)

• Any solution satisfying equations = Fixed Point Solution (FP)

• Iterative algorithm computes Maximum Fixed Point (MFP):

– In any other solution, the values of IN[b] and OUT[b]
are ≤ the corresponding values of the MFP

15-745: Foundations of Data Flow 19

{d2}

Meet: Union

{d1}

{d1,d2}

T = {}

exit

entry

d1: b = 1

in[2]={d1}

out[2]={d1}

in[exit]

in[1]={}

out[1]={}

out[entry]={}

in[3]={d1}

out[3]={d1}

exit

entry

d1: b = 1

in[2]={d1}

out[2]={d1}

in[exit]

in[1]={}

out[1]={}

out[entry]={}

in[3]={d1}

out[3]={d1}

{}

{}
FP MFP≤

[𝑥 < 𝑦 iff 𝑦 → 𝑥]

Carnegie Mellon

Partial Correctness of Algorithm

• If data flow framework is monotone (i.e., x ≤ y implies f(x) ≤ f(y))
then if the algorithm converges, IN[b] ≤ MOP[b]

• Proof: Induction on path lengths

– Define IN[entry] = OUT[entry]
and transfer function of entry = Identity function

– Base case: path of length 0

• Proper initialization of IN[entry]

– If true for path of length k, pk = (n1, ..., nk), then
true for path of length k+1: pk+1 = (n1, ..., nk+1)

• Assume: IN[nk] ≤ fnk-1
(fnk-2

(... fn1
(IN[entry])))

• IN[nk+1] = OUT[nk]  ...

≤ OUT[nk] = fnk
(IN[nk])

≤ fnk
(fnk-1

(... fn1
(IN[entry]))) by inductive assumption & monotonicity

15-745: Foundations of Data Flow 20

Carnegie Mellon

Precision

• If data flow framework is distributive (i.e., f(x  y) = f(x)  f(y))
then if the algorithm converges, IN[b] = MOP[b]

• Monotone but not distributive: behaves as if there are additional paths

15-745: Foundations of Data Flow 21

a = 2

b = 3

a = 3

b = 2

c = a + b

Carnegie Mellon

Additional Property to Guarantee Convergence

• Data flow framework (monotone) converges if there is a finite descending chain

• For each variable IN[b], OUT[b], consider the sequence of values set to each
variable across iterations:

– if sequence for in[b] is monotonically decreasing

• sequence for out[b] is monotonically decreasing

• (out[b] initialized to T)

– if sequence for out[b] is monotonically decreasing

• sequence of in[b] is monotonically decreasing

• Must be at least one out[b] change to warrant an additional iteration

– Thus, guaranteed to converge after at most
(height of lattice) x (number of nodes in flow graph) iterations

15-745: Foundations of Data Flow 22

Carnegie Mellon

IV. Speed of Convergence

• Speed of convergence depends on order of node visits

• Reverse “direction” for backward flow problems

15-745: Foundations of Data Flow 23

Carnegie Mellon

Reverse Postorder

• Step 1: depth-first post order

main() {

count = 1;

Visit(root);

}

Visit(n) {

for each successor s that

has not been visited

Visit(s);

PostOrder(n) = count;

count = count+1;

}

• Step 2: reverse order

For each node i

rPostOrder(i)= NumNodes - PostOrder(i)

15-745: Foundations of Data Flow 24

if x == 1B0

B2 B1

if x == 0B3

B5 B4

B6

(order among siblings
unimportant)

1

2 3

7

65

4

Carnegie Mellon

Depth-First Iterative Algorithm (forward)

input: control flow graph CFG = (N, E, Entry, Exit)

/* Initialize */

out[entry] = init_value

For all nodes i

out[i] = T

Change = True

/* iterate */

While Change {

Change = False

For each node i in rPostOrder {

in[i] = (out[p]), for all predecessors p of i
oldout = out[i]

out[i] = fi(in[i])

if oldout  out[i]

Change = True

}

}

15-745: Foundations of Data Flow 25

Carnegie Mellon

• If cycles do not add information*

• information can flow in one pass down nodes of increasing order number:

• e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 6 ...

• passes determined by number of back edges in the path

• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic path + 2

• (2 are necessary even for acyclic CFGs)

• (2 not 1 since need a last pass where nothing changed)

• What is the depth?

– corresponds to depth of intervals for “reducible” graphs

– in real programs: average of 2.75

first pass

Speed of Convergence

15-745: Foundations of Data Flow 26

[ALSU 9.6.7]

* E.g., if a defn d in node 𝑛1 reaches a node 𝑛𝑘 along a path that contains a cycle (i.e., a repeated node),
then the cycle can be removed to form a shorter path from 𝑛1 to 𝑛𝑘 such that d reaches 𝑛𝑘.

Carnegie Mellon

Summary: A Check List for Data Flow Problems

• Semi-lattice

– set of values

– meet operator

– top, bottom

– finite descending chain?

• Transfer functions

– function of each basic block

– monotone

– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)

– visit order: rPostOrder

– depth of the graph

15-745: Foundations of Data Flow 27

Carnegie Mellon

Today’s Class

• Global common subexpression elimination

– ALSU 9.2.6

• Constant propagation/folding

– ALSU 9.4

15-745: Foundations of Data Flow 28

Wednesday’s Class

I. Meet operator

II. Transfer functions

III. Correctness, Precision, Convergence

IV. Efficiency

