
Carnegie Mellon

Lecture 7

Global Common Subexpression Elimination;
Constant Propagation/Folding

I. Available Expressions Analysis

II. Eliminating CSEs

III. Constant Propagation/Folding

ALSU 9.2.6, 9.4

Phillip B. Gibbons 15-745: GCSE & Constants 1

Carnegie Mellon

Review: A Check List for Data Flow Problems

• Semi-lattice

– set of values V

– meet operator 

– Top T

– finite descending chain?

15-745: GCSE & Constants 2

Meet Operator:
Union

{d2}{d1}

T = {d1,d2}

{}

Meet Operator:
Intersection

Carnegie Mellon

Review: A Check List for Data Flow Problems

• Semi-lattice

– set of values V

– meet operator 

– Top T

– finite descending chain?

• Transfer functions

– function of a basic block f: V  V

– closed under composition

– meet-over-paths MOP

– monotone

– distributive?

15-745: GCSE & Constants 3

If data flow framework is monotone
(i.e., x ≤ y implies f(x) ≤ f(y))
then if the algorithm converges,
IN[b] ≤ MOP[b] *, so analysis is ?

For each node n: MOP(n) =  fpi (T),
for all paths pi in data-flow graph
reaching n.

If data flow framework is distributive
(i.e., f(x  y) = f(x)  f(y))
then if the algorithm converges,
IN[b] = MOP[b] *, so ?

Data flow framework (monotone)
converges if its lattice has ?

* for backward analysis OUT[b]

safe.

a finite descending chain.

precision is high.

Carnegie Mellon

Review: MOP considers more paths than Perfect

15-745: GCSE & Constants 4

if x == 1B1

B2 B3

if x == 0B4

B5 B6

B7

Assume x ∈ 0,1 and B2 & B3 do not update x

Perfect considers only:

MOP: Also considers unexecuted paths

B1-B2-B4-B6-B7 (i.e., x=1)
B1-B3-B4-B5-B7 (i.e., x=0)

B1-B2-B4-B5-B7
B1-B3-B4-B6-B7

What changes if x ∈ 0,1,2 ?

B1-B3-B4-B6-B7 is also a Perfect path

Carnegie Mellon

Review: A Check List for Data Flow Problems

• Semi-lattice

– set of values V

– meet operator 

– Top T

– finite descending chain?

• Transfer functions

– function of a basic block f: V  V

– closed under composition

– meet-over-paths MOP

– monotone

– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)

– visit order: rPostOrder

– depth of the graph

15-745: GCSE & Constants 5

Number of iterations = number of
back edges in any acyclic path + 2

❼

❺ ❻

B0

B2 B1

❹

❷ ❸

B3

B5 B4

❶B6

B0,B1,…,B6 is
rPostOrder

Carnegie Mellon

• If cycles do not add information*

• information can flow in one pass down nodes of increasing order number:

• e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 6 ...

• passes determined by number of back edges in the path

• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic path + 2

• (2 are necessary even for acyclic CFGs)

• (2 not 1 since need a last pass where nothing changed)

first pass

Review: Speed of Convergence

15-745: Foundations of Data Flow 6

[ALSU 9.6.7]

* E.g., if a defn d in node 𝑛1 reaches a node 𝑛𝑘 along a path that contains a cycle (i.e., a repeated node),
then the cycle can be removed to form a shorter path from 𝑛1 to 𝑛𝑘 such that d reaches 𝑛𝑘.

L: a = b
b = c
c = 1
goto L

Example where cycles add information,
for constant propagation

Carnegie Mellon

I. Available Expressions Analysis

• Availability of an expression E at point P

• DEFINITION: Along every path to P in the flow graph:

– E must be evaluated at least once

– no variables in E redefined after the last evaluation

• Observation: E may have different values on different paths (e.g., x+y above)

15-745: GCSE & Constants 7

x = 0

m = x + y

n3 = a - b

c = -1

m = a - b

n4 = x + y

n5 = c + d

n1 = x + y

n2 = c + d

no

no
yes

Is right-hand-side
expression available?

Part of Assignment #1

Carnegie Mellon

Available Expressions Example

15-745: GCSE & Constants 8

Is 4*i available at this point?

a = 3

yes yes

Carnegie Mellon

Formulating the Problem

• Domain:

• a bit vector, with
a bit for each “textually unique” expression in the program

• Forward or Backward?

• Lattice Elements?

• Meet Operator?

• check: commutative, idempotent, associative

• Partial Ordering

• Top?

• Bottom?

• Boundary condition: entry/exit node?

• Initialization for iterative algorithm?

15-745: GCSE & Constants 9

{e2}{e1}

T = {e1,e2}

{}

Meet Operator:
Intersection

T = (1,1)

(1,0) (0,1)

(0,0)

Meet Operator:
Elementwise-min

Forward

All bit vectors of given length

Elementwise-min

(1,1,…,1)

(0,0,…,0)

out[entry]=(0,…,0)

Coming soon…

Carnegie Mellon

Transfer Functions

• Expression E is available at point P iff along every path to P in the flow graph:

– E must be evaluated at least once

– no variables in E redefined after the last evaluation

• Can use the same equation as reaching definitions

• out[b] = gen[b]  (in[b] - kill[b])

• Start with the transfer function for a single instruction: x = y + z

• When does the instruction kill an expression E?

• When does it generate an expression E?

• Calculate transfer functions for complete
basic blocks by composing individual
instruction transfer functions

15-745: GCSE & Constants 10

It defines a variable in E.

It evaluates E and doesn’t kill it.

{a-d}

{b+c}

{a-d}

{}

{}

Carnegie Mellon

Initialization for Interior Nodes

15-745: GCSE & Constants 11

a = b + c
out[b] = Gen[b] U (in(b)-Kill[b])

• What if initialize out[B2] = {}?

{e2}{e1}

T = {e1,e2}

{}

Meet Operator:
Intersection

• What if initialize out[B2] = T?

Imprecise: in[B2]=out[B1]  out[B2] = {}

Precise: in[B2]=out[B1]

• Initialize out[b]= T for all interior b

out[B1]

out[B2]

in[B2]

Thus, in[B3]={} each iteration, so conclude “b+c” is NOT available in B3.

B1

B2

x = b + c
B3

in[B3]

Thus, in[B3]={“b+c”}, so conclude “b+c” is available in B3.

a = b + c

x = b + c

Carnegie Mellon

II. Eliminating CSEs

• Value Numbering (within basic block)

– Eliminates local common subexpressions

• Available expressions (across basic blocks)

– Provides the set of expressions available at the start of a block

• If CSE is an “available expression”, then transform the code

– Original destination may be:

• a temporary register

• overwritten

• different from the variables on other paths

– One solution: Copy the expression to a new variable at each evaluation
reaching the redundant use

15-745: GCSE & Constants 12

Carnegie Mellon

Example Revisited: Value Numbering Only

15-745: GCSE & Constants 13

x = 0

m = x + y

n3 = a – b

c = -1

m = a – b

n4 = x + y

n5 = c + d

n1 = x + y

n2 = c + d t2 = c + d

n2 = t2

t1 = x + y

n1 = t1

t5 = 0

x = t5

t6 = x + y

m = t6

t3 = a - b

n3 = t3

t4 = -1

c = t4

t7 = a - b

m = t7

t8 = x + y

n4 = t8

t9 = c + d

n5 = t9

Carnegie Mellon

Example Revisited: Eliminating the CSE

15-745: GCSE & Constants 14

x = 0

m = x + y

n3 = a – b

c = -1

m = a – b

n4 = x + y

n5 = c + d

n1 = x + y

n2 = c + d t2 = c + d

n2 = t2

t1 = x + y

n1 = t1

t5 = 0

x = t5

t6 = x + y

m = t6

t3 = a - b

n3 = t3

t4 = -1

c = t4

t7 = a - b

m = t7

t8 = x + y

n4 = t8

t9 = c + d

n5 = t9

t8 = t1

t1 = t6

“x+y” is available,
but in t1 and t6

Carnegie Mellon

Limitation: Textually Identical Expressions

• Commutative operations

– Won’t detect x + y as an available expression

– Solution: Sort the operands

15-745: GCSE & Constants 15

t1 = x + y t2 = y + x

t3 = x + y

Carnegie Mellon

Further Improvements

• Examples

– Expressions with more than two operands

– Textually different expressions may be equivalent

t1 = x + y

if t1 > y goto L1

z = x

t2 = z + y

15-745: GCSE & Constants 16

t1 = x + y

t2 = t1 + z

t3 = y + x

t4 = t3 + z

t5 = x + y

t6 = t5 + z

Solution: Use multiple passes of GCSE combined with copy propagation

After copy propagation:
t2 = x + y

Carnegie Mellon

Summary

15-745: Foundations of Data Flow 17

Reaching Definitions Available Expressions

Domain Sets of definitions Sets of expressions

Direction forward:
out[b] = fb(in[b])
in[b] =  out[pred(b)]

forward:
out[b] = fb(in[b])
in[b] =  out[pred(b)]

Transfer function fb(x) = Genb  (x –Killb) fb(x) = Genb  (x -Killb)

Meet Operation ()  

Boundary Condition out[entry] =  out[entry] = 

Initial interior points out[b] = T =  out[b] = T = all expressions

Available Expressions
Killb = all E such that block b defines a variable in E

Genb = all E such that block b evaluates E and doesn’t later kill it

Carnegie Mellon

III. Constant Propagation/Folding

• At every basic block boundary, for each variable v

• determine if v is a constant

• if so, what is the value?

15-745: GCSE & Constants 18

x = 2

m = x + e
e = 3

p = e + 4

e = 1

e, x, m are each
a constant value

x, m are each
a constant value
(but not e)

Which
variables are
constants?

Carnegie Mellon

Semi-lattice Diagram

– Finite domain?

– Finite height?

– One such lattice for each variable in the program

15-745: GCSE & Constants 19

No (unless bound number of bits)

Yes (2)

… …

Carnegie Mellon

Meet Operation in Table Form

• Meet Operation:

– Note: UNDEF  c2 = c2

15-745: GCSE & Constants 20

v1 v2 v1  v2

UNDEF
UNDEF

c2

NAC

c1

UNDEF

c2

NAC

NAC
UNDEF

c2

NAC

UNDEF

NAC

NAC

NAC

NAC

NAC

c1

c2

c1, if c1 =c2

NAC otherwise

… …

Carnegie Mellon

Example

15-745: GCSE & Constants 21

x = 2

p = x

x,p = UNDEF

x,p = UNDEF

x = 2
p = UNDEF x,p = UNDEFx = 2

p = UNDEF

x,p = 2

Carnegie Mellon

Transfer Function

• Assume a basic block has only 1 instruction

• Let IN[b,x], OUT[b,x]

– be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = UNDEF, for all x.

• Non-assignment instructions: OUT[b,x] = IN[b,x]

• Assignment instructions: (next page)

15-745: GCSE & Constants 22

Carnegie Mellon

… …

Transfer Function (cont.)

• Let an assignment be of the form x3 = x1 + x2

• “+” represents a generic operator

• OUT[b,x] = IN [b,x], if x  x3

• Use: x ≤ y implies f(x) ≤ f(y) to check if framework is monotone

• [v1 v2 ...]  [v1’ v2’ ...], f([v1 v2 ...])  f ([v1’ v2’ ...])

15-745: GCSE & Constants 23

IN[b,x1] IN[b,x2] OUT[b,x3]

UNDEF
UNDEF

c2

NAC

c1

UNDEF

c2

NAC

NAC
UNDEF

c2

NAC

UNDEF

UNDEF

UNDEF

NAC

NAC

NAC

NAC

NAC

c1 + c2

Carnegie Mellon

Not Distributive

• Not Distributive: 𝑓3(𝑓1 T  𝑓2 T) < 𝑓3(𝑓1 T) 𝑓3(𝑓2 T)

• Iterative solution is not precise. It is not wrong. It is conservative.

15-745: GCSE & Constants 24

x = 2

y = 3

x = 3

y = 2

z = x + y

B1 B2

B3

x y z

𝑓1 T 2 3 UNDEF

𝑓2 T 3 2 UNDEF

𝑓1 T  𝑓2 T NAC NAC UNDEF

𝑓3(𝑓1 T  𝑓2 T) NAC NAC NAC

𝑓3(𝑓1 T) 2 3 5

𝑓3(𝑓2 T) 3 2 5

𝑓3(𝑓1 T) 𝑓3(𝑓2 T) NAC NAC 5

Carnegie Mellon

Summary of Constant Propagation

• A useful optimization

• Illustrates:

– abstract execution

– an infinite semi-lattice

– a non-distributive problem

15-745: GCSE & Constants 25

Carnegie Mellon

Today’s Class

• Induction Variable Optimizations
– ALSU 9.1.8, 9.6, 9.8.1

15-745: GCSE & Constants 26

I. Available Expressions Analysis

II. Eliminating CSEs

III. Constant Propagation/Folding

Friday’s Class

