Lecture 7

Global Common Subexpression Elimination;
Constant Propagation/Folding

I. Available Expressions Analysis
Il. Eliminating CSEs

Ill. Constant Propagation/Folding

ALSU 9.2.6,9.4

Phillip B. Gibbons 15-745: GCSE & Constants 1

Review: A Check List for Data Flow Problems

* Semi-lattice T ={d1,d2}
— setof values V / \
— meet operator A {d1} {d2}

— Top T \ /
{}

— finite descending chain?

Meet Operator:
Intersection

Meet Operator:
Union

15-745: GCSE & Constants 2

Review: A Check List for Data Flow Problems

e Semi-lattice

set of values V

meet operator A

Top T

finite descending chain?

* Transfer functions

function of a basic block f: V—> V
closed under composition
meet-over-paths MOP
monotone

distributive?

For each node n: MIOP(n) = /\f (T),
for all paths p; in data-flow graph
reaching n.

If data flow framework is monotone
(i.e., x <y implies f(x) < f(y))

then if the algorithm converges,

IN[b] < MOP[b] *, so analysis is ? safe.

Data flow framework (monotone)
converges if its lattice has ?
a finite descending chain.

If data flow framework is distributive

(i.e., f(x Ay) = f(x) A f(y))
then if the algorithm converges,
IN[b] = MOP[b] *, so ? precision is high.

* for backward analysis OUT[b]

15-745: GCSE & Constants

Review: MOP considers more paths than Perfect

Bl

if x ==

/\ Perfect considers only:

B2 B3 B1-B2-B4-B6-B7 (i.e., x=1)

B1-B3-B4-B5-B7 (i.e., x=0)

Bd|if x == MOP: Also considers unexecuted paths
/\ B1-B2-B4-B5-B7
BS B6 B1-B3-B4-B6-B7
\/ What changes if x € {0,1,2} ?
B7 B1-B3-B4-B6-B7 is also a Perfect path

Assume x € {0,1} and B2 & B3 do not update x

15-745: GCSE & Constants 4

Review: A Check List for Data Flow Problems

BO,B1,..B6is BO
rPostOrder

B2

 Semi-lattice
— set of values V
— meet operator A
— Top T
— finite descending chain?

>°

Bl

/0
Ne

* Transfer functions B3

— function of a basic block f: V— V
— closed under composition B5 0 r3) B4
— meet-over-paths MOP
— monotone

— distributive?

>e

B6

X

e Algorithm
— initialization step (entry/exit, other nodes)
— visit order: rPostOrder
— depth of the graph

15-745: GCSE & Constants 5

Number of iterations = number of
back edges in any acyclic path + 2

Review: Speed of Convergence [ALSU 9.6.7]

e If cycles do not add information*
e information can flow in one pass down nodes of increasing order number:

* eg,1>4->5->7->2->6...
\)

Y
first pass

e passes determined by number of back edges in the path

* essentially the nesting depth of the graph

* Number of iterations = number of back edges in any acyclic path + 2
* (2 are necessary even for acyclic CFGs)
* (2 not 1 since need a last pass where nothing changed)

* E.g., if a defn d in node n; reaches a node n;, along a path that contains a cycle (i.e., a repeated node),
then the cycle can be removed to form a shorter path from n, to n; such that d reaches n,.

L:a=b
b=c Example where cycles add information,
c=1 for constant propagation
goto L

15-745: Foundations of Data Flow 6

|. Available Expressions Analysis

nl = x + y

Is right-hand-side
n2 =c+d

expression available?

x =0 n3 =a-b
m=XxX +y c = -1
Part of Assignment #1
YEAH, AND'YOU'DECIDE
m a-b
nd = x +y
nS5 =c +d
* Availability of an expression E at point P A

"\ s ot
'METHIS NOW' WHY=,

TOIE

DEFINITION: Along every path to P in the flow graph:
— E must be evaluated at least once

— no variables in E redefined after the last evaluation

* Observation: E may have different values on different paths (e.g., x+y above)

Carnegie Mellon -

15-745: GCSE & Constants

Available Expressions Example

£1 = 4*i £1 = 4%i |
a=3 1=
t1 = 4+*1
E}A Y \ !
£2 = 4A*ji t2 = 4*3 '

Is 4*i available at this point?

Carnegie Mellon -

15-745: GCSE & Constants 8

Formulating the Problem

T=(1,1)
* Domain:
* a b?t vector, with . o (1 O)/ \(;),1)
a bit for each “textually unique” expression in the program !
* Forward or Backward? Forward \ 00 /
* Llattice Elements? All bit vectors of given length (0:0)
* Meet Operator? Elementwise-min Meet Operator:

* check: commutative, idempotent, associative Elementwise-min

e Partial Ordering

T ={el,e2}
+ Top? (1,1,...,1) O\
* Bottom? (0,0,...,0) {e1} {e2}
* Boundary condition: entry/exit node? out[entry]=(0,...,0) \ /
* Initialization for iterative algorithm? Coming soon... {}

Meet Operator:
Intersection

15-745: GCSE & Constants 9

Transfer Functions

* Expression E is available at point P iff along every path to P in the flow graph:
— E must be evaluated at least once
— no variables in E redefined after the last evaluation

e Can use the same equation as reaching definitions
* out[b] = gen[b] U (in[b] - kill[b])
* Start with the transfer function for a single instruction: x = y + z

* When does the instruction kill an expression E? |t defines a variable in E.
* When does it generate an expression E? |t evaluates E and doesn’t kill it.

Statement Available Expressions
e Calculate transfer functions for complete 0
basic blocks by composing individual a=Db+ec
instruction transfer functions {b+c}
b = a -
{a-d}
¢ =b + ¢
. et
15-745: GCSE & Constants 10 d =a-d {}

Initialization for Interior Nodes

a=>b+c
out[B1]
in[B2]
out[B2]
in[B3]

x=Db + c

Bl out[b] = Gen[b] U (in(b)-Kill[b])
T ={el,e2}
5 / \
. {e1} {e2}

~N 7
0

Meet Operator:

B3 Intersection

* What if initialize out[B2] = {}? Imprecise: in[B2]=out[B1] A out[B2] = {}
Thus, in[B3]={} each iteration, so conclude “b+c” is NOT available in B3.

 What if initialize out[B2] = T? Precise: in[B2]=out[B1]
Thus, in[B3]={"b+c”}, so conclude “b+c” is available in B3.

* |nitialize out[b]= T for all interior b

15-745: GCSE & Constants

11

-
ll. Eliminating CSEs

* Value Numbering (within basic block)

— Eliminates local common subexpressions
* Available expressions (across basic blocks)
— Provides the set of expressions available at the start of a block

* If CSE is an “available expression”, then transform the code

— Original destination may be:
* atemporary register
* overwritten
» different from the variables on other paths

— One solution: Copy the expression to a new variable at each evaluation
reaching the redundant use

15-745: GCSE & Constants 12

Example Revisited: Value Numbering Only

Al ==+ y |tl = x + y
nl = tl1
n2-=—e-+ d[(t2 =c + d
n2 = t2
_‘ﬁ\
_ a3 =—a—Db|t3 =a - b
X = £ 3 = t3
n=
LIl —=—H—t_3 =
t6 x +vy =1 t4 = -1
m = t6
c = t4

af =—a—-b-|t7T = a - b
m = t7
=X+ ¥ | £t8 = x + y
n4d = t8
Mt9=c+d
n5 = t9

15-745: GCSE & Constants 13

Example Revisited: Eliminating the CSE

X +y

x = t5 "y =—a—>b|t3 =a - b
=3+ |t6 = x + y n3 = t3
e—~=—=1 t4 = -1
c = t4
“x+y” is available, t7
butin t1 and t6 RE=w4+ ¥ | g8 =xn+y t8 = tl
= t8
RS =—C+2 |9 = ¢ + d
t9

15-745: GCSE & Constants

Limitation: Textually Identical Expressions

« Commutative operations

tl =x +y t2 =y + x
t3 =x+y

— Won’t detect x + y asan available expression

— Solution: Sort the operands

15-745: GCSE & Constants 15

Further Improvements

 Examples

— Expressions with more than two operands

tl =x +y t3 =y + x
t2 = t1 + z t4d = t3 + z
t5 =x +y

t6 = t5 + z

— Textually different expressions may be equivalent

tl =x + vy

if t1 > y goto L1l

z=x After copy propagation:
2 =—z——y t2 =x +y

Solution: Use multiple passes of GCSE combined with copy propagation

15-745: GCSE & Constants 16

Summary

Reaching Definitions

Available Expressions

Domain

Sets of definitions

Sets of expressions

Direction

forward:
out[b] = f,(in[b])
in[b] = A out[pred(b)]

forward:
out[b] = f,(in[b])
in[b] = A out[pred(b)]

Transfer function

fo(x) = Gen, U (x —Kill,.)

f.(x) = Gen, U (x -Kill,)

Meet Operation (A)

O

M

Boundary Condition

out[entry] = O

out[entry] = O

Initial interior points

outlb]=T=Y

out[b] =T = all expressions

Available Expressions

Kill, = all E such that block b defines a variable in E
Gen, = all E such that block b evaluates E and doesn’t later kill it

15-745: Foundations of Data Flow

17

-
lIl. Constant Propagation/Folding

e At every basic block boundary, for each variable v
* determine if vis a constant
* if so, what is the value?

e =1 Which

variables are
constants?

|
N

X =
m

e, X, m areeach
a constant value

]
"
+
o

x, m areeach
a constant value
(but not e)

15-745: GCSE & Constants 18

Semi-lattice Diagram

UNDEF

RSN
\\//

— Finite domain? No (unless bound number of bits)
— Finite height? Yes (2)
— One such lattice for each variable in the program

15-745: GCSE & Constants 19

Carnegie Mellon -

Meet Operation in Table Form

* Meet Operation:

vl v2 vl Av2
UNDEF UNDEF
UNDEF UNDEF - ;
2 2
/// l \\\ NAC NAC
. UNDEF C,
“ c, c, ifc, =c,
NAC otherwise
NAC NAC
UNDEF NAC
NAC c, NAC
NAC NAC
— Note: UNDEF A C, =¢,
Carnegie Mellon -

15-745: GCSE & Constants 20

Example

x,p = UNDEF

x,p = UNDEF

15-745: GCSE & Constants 21

Transfer Function

* Assume a basic block has only 1 instruction
* LetIN[b,x], OUT[b,x]

— be the information for variable x at entry and exit of basic block b

* OUT[entry, x] = UNDEEF, for all x.
* Non-assignment instructions: OUT[b,x] = IN[b,x]

* Assignment instructions: (next page)

15-745: GCSE & Constants 22

UNDEF

TN

Transfer Function (cont.)

* Let an assignment be of the form x; = x, +x,

* “+” represents a generic operator
e OUT[b,x] = IN [b,x], if x # X4

\\\l///...

IN[b,x,] IN[b,x,] OUT[b,x,]

UNDEF UNDEF

UNDEF C, UNDEF
NAC NAC
UNDEF UNDEF

! c, c,+¢,
NAC NAC
UNDEF NAC

NAC c, NAC
NAC NAC

Use: x <y implies f(x) < f(y) to check if framework is monotone

° [vpvy, 1<[v vy ...

1 f(lvo vy D) <fllvy vy

15-745: GCSE & Constants

)

-]
Not Distributive

Bl| x =2 x = 3 B2
y =3 y = 2
\/
B3 Z =X +y
__--
(M) UNDEF
f2(T) 3 2 UNDEF
fi(DA f,(T) NAC NAC UNDEF
f(fL(DA f,(D) NAC NAC NAC
fz(f1 (1) 2 3 5
f3(f2(M) 3 2 5

f3(FLMIA f3(f(T) NAC NAC 5

* Not Distributive: f3(f1(TA f2(T) < f3(f1(M)HA f3(f2(T))

* Iterative solution is not precise. It is not wrong. It is conservative.

15-745: GCSE & Constants 24

Summary of Constant Propagation

e A useful optimization
* lllustrates:
— abstract execution
— an infinite semi-lattice
— a non-distributive problem

15-745: GCSE & Constants 25

-
Today’s Class

|. Available Expressions Analysis
Il. Eliminating CSEs

IIl. Constant Propagation/Folding

Friday’s Class

* Induction Variable Optimizations
— ALSU9.1.8,9.6,9.8.1

15-745: GCSE & Constants 26

