Lecture 7

Global Common Subexpression Elimination; Constant Propagation/Folding

- I. Available Expressions Analysis
- II. Eliminating CSEs
- III. Constant Propagation/Folding

Review: A Check List for Data Flow Problems

- Semi-lattice
 - set of values V
 - meet operator
 - Top **T**
 - finite descending chain?

Meet Operator: Union

Review: A Check List for Data Flow Problems

- Semi-lattice
 - set of values V
 - meet operator
 - Top T
 - finite descending chain?
- Transfer functions
 - function of a basic block f: $V \rightarrow V$
 - closed under composition
 - meet-over-paths MOP
 - monotone
 - distributive?

For each node *n*: MOP(*n*) = $\wedge f_{p_i}$ (T), for all paths p_i in data-flow graph reaching *n*.

If data flow framework is monotone (i.e., $x \le y$ implies $f(x) \le f(y)$) then if the algorithm converges, $IN[b] \le MOP[b]^*$, so analysis is ? safe.

Data flow framework (monotone) converges if its lattice has ? a finite descending chain.

If data flow framework is distributive (i.e., $f(x \land y) = f(x) \land f(y)$) then if the algorithm converges, IN[b] = MOP[b] *, so ? precision is high.

* for backward analysis OUT[b]

Carnegie Mellon

Review: MOP considers more paths than Perfect

Perfect considers only: B1-B2-B4-B6-B7 (i.e., x=1) B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths

B1-B2-B4-B5-B7 B1-B3-B4-B6-B7

What changes if $x \in \{0,1,2\}$? B1-B3-B4-B6-B7 is also a Perfect path

Assume $x \in \{0,1\}$ and B2 & B3 do not update x

Carnegie Mellon

Review: A Check List for Data Flow Problems

- Semi-lattice
 - set of values V
 - meet operator
 - Top T
 - finite descending chain?
- Transfer functions
 - function of a basic block f: $V \rightarrow V$
 - closed under composition
 - meet-over-paths MOP
 - monotone
 - distributive?
- Algorithm
 - initialization step (entry/exit, other nodes)
 - visit order: rPostOrder
 - depth of the graph

Number of iterations = number of back edges in any acyclic path + 2

Review: Speed of Convergence

- If cycles do not add information*
 - information can flow in one pass down nodes of increasing order number:

first pass

- passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
 - (2 are necessary even for acyclic CFGs)
 - (2 not 1 since need a last pass where nothing changed)
- * E.g., if a defined in node n_1 reaches a node n_k along a path that contains a cycle (i.e., a repeated node), then the cycle can be removed to form a shorter path from n_1 to n_k such that d reaches n_k .

L: a = b	
b = c	Example where cycles add information,
c = 1	for constant propagation
goto L	

[ALSU 9.6.7]

I. Available Expressions Analysis

Is right-hand-side expression available?

Part of Assignment #1

Availability of an expression E at point P

- DEFINITION: Along every path to P in the flow graph:
 - E must be evaluated at least once
 - no variables in E redefined after the last evaluation
- Observation: E may have different values on different paths (e.g., **x+y** above)

Available Expressions Example

Is 4*i available at this point?

Formulating the Problem

- Domain:
 - a bit vector, with
 a bit for each "textually unique" expression in the program

Elementwise-min

- Forward or Backward? Forward
- Lattice Elements? All bit vectors of given length
- Meet Operator?
 - check: commutative, idempotent, associative

- T = (1,1)(1,0)
 (0,1)
 (0,0)
 - Meet Operator: Elementwise-min

- Partial Ordering
- Top? (1,1,...,1)
- Bottom? (0,0,...,0)
- Boundary condition: entry/exit node? out[entry]=(0,...,0)
- Initialization for iterative algorithm? Coming soon...

Meet Operator: Intersection

Transfer Functions

- Expression E is available at point P iff along every path to P in the flow graph:
 - E must be evaluated at least once
 - no variables in E redefined after the last evaluation
- Can use the same equation as reaching definitions
 - out[b] = gen[b] ∪ (in[b] kill[b])
- Start with the transfer function for a single instruction: x = y + z
 - When does the instruction kill an expression E? It defines a variable in E.
 - When does it generate an expression E? It evaluates E and doesn't kill it.

10

• Calculate transfer functions for complete basic blocks by composing individual instruction transfer functions

Statement	Available Expressions	
a - h + c	{}	
a = D + C	{b+c}	
b = a - d	{a-d}	
c = b + c	{a-d}	
d = a - d	{}	

Initialization for Interior Nodes

- What if initialize out[B2] = {}? Imprecise: in[B2]=out[B1] out[B2] = {} Thus, in[B3]={} each iteration, so conclude "b+c" is NOT available in B3.
- What if initialize out[B2] = T? Precise: in[B2]=out[B1] Thus, in[B3]={"b+c"}, so conclude "b+c" is available in B3.
- Initialize out[b]= ⊤ for all interior b

II. Eliminating CSEs

- Value Numbering (within basic block)
 - Eliminates local common subexpressions
- Available expressions (across basic blocks)
 - Provides the set of expressions available at the start of a block
- If CSE is an "available expression", then transform the code
 - Original destination may be:
 - a temporary register
 - overwritten
 - different from the variables on other paths
 - One solution: Copy the expression to a new variable at each evaluation reaching the redundant use

Example Revisited: Value Numbering Only

Example Revisited: Eliminating the CSE

Limitation: Textually Identical Expressions

• Commutative operations

- Won't detect x + y as an available expression
- Solution: Sort the operands

Further Improvements

• Examples

Expressions with more than two operands

Textually different expressions may be equivalent

$$t1 = x + y$$

if $t1 > y$ goto L1

$$z = x$$

$$t2 = z + y$$

After copy propagation:

$$t2 = x + y$$

Solution: Use multiple passes of GCSE combined with copy propagation

Carnegie Mellon

Summary

	Reaching Definitions	Available Expressions
Domain	Sets of definitions	Sets of expressions
Direction	forward: out[b] = f _b (in[b]) in[b] = \land out[pred(b)]	forward: $out[b] = f_b(in[b])$ $in[b] = \land out[pred(b)]$
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	$f_b(x) = Gen_b \cup (x - Kill_b)$
Meet Operation (\land)	U	\cap
Boundary Condition	out[entry] = \emptyset	out[entry] = \emptyset
Initial interior points	$out[b] = T = \emptyset$	out[b] = T = all expressions

Available Expressions

Kill_b = all E such that block b defines a variable in E

Gen_b = all E such that block b evaluates E and doesn't later kill it

Carnegie Mellon

III. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?

Which

variables are

constants?

Semi-lattice Diagram

- Finite domain? No (unless bound number of bits)
- Finite height? Yes (2)
- One such lattice for each variable in the program

Meet Operation in Table Form

• Meet Operation:

- Note: UNDEF \wedge c₂ = c₂

Example

Transfer Function

- Assume a basic block has only 1 instruction
- Let IN[b,x], OUT[b,x]
 - be the information for variable x at entry and exit of basic block b
- OUT[entry, x] = UNDEF, for all x.
- Non-assignment instructions: OUT[b,x] = IN[b,x]
- Assignment instructions: (next page)

Transfer Function (cont.)

- Let an assignment be of the form x₃ = x₁ + x₂
 - "+" represents a generic operator
 - OUT[b,x] = IN [b,x], if $x \neq x_3$

IN[b,x ₁]	IN[b,x ₂]	OUT[b,x ₃]	
	UNDEF	UNDEF	
UNDEF	C ₂	UNDEF	
	NAC	NAC	
	UNDEF	UNDEF	
c ₁	UNDEF c ₂ NAC	c ₁ + c ₂	
	NAC	NAC	
	UNDEF	NAC	
NAC	C ₂	NAC	
	NAC	NAC	

- **Use:** $x \le y$ implies $f(x) \le f(y)$ to check if framework is monotone
 - $[v_1 v_2 \dots] \le [v_1' v_2' \dots], f([v_1 v_2 \dots]) \le f([v_1' v_2' \dots])$

UNDEF

0

NAC

1

2

3 ...

-1

- 2

...•3

Not Distributive

	x	У	z
$f_1(T)$	2	3	UNDEF
$f_2(T)$	3	2	UNDEF
$f_1(T) \land f_2(T)$	NAC	NAC	UNDEF
$f_3(f_1(T) \land f_2(T))$	NAC	NAC	NAC
$f_{3}(f_{1}(T))$	2	3	5
$f_{3}(f_{2}(T))$	3	2	5
$f_3(f_1(T)) \wedge f_3(f_2(T))$	NAC	NAC	5

- Not Distributive: $f_3(f_1(T) \land f_2(T)) < f_3(f_1(T)) \land f_3(f_2(T))$
- Iterative solution is not precise. It is not wrong. It is conservative.

Carnegie Mellon

Summary of Constant Propagation

- A useful optimization
- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem

Today's Class

- I. Available Expressions Analysis
- II. Eliminating CSEs
- III. Constant Propagation/Folding

Friday's Class

- Induction Variable Optimizations
 - ALSU 9.1.8, 9.6, 9.8.1