
Carnegie Mellon

Lecture 8:

Induction Variable Optimizations

I. Finding loops

II. Overview of Induction Variable Optimizations

III. Further details

Phillip B. Gibbons 15-745: Induction Variables 1

ALSU 9.1.8, 9.6, 9.8.1

Carnegie Mellon

What is a Loop?

• Goals:

– Define a loop in graph-theoretic terms (control flow graph)

– Independent of specific programming language constructs used

– A uniform treatment for all loops: DO, while, for, goto’s

• Not every cycle is a “loop” from an optimization perspective

• Intuitive properties of a loop

– single entry point

– edges must form at least a cycle

• Loops can nest

15-745: Induction Variables 2

start

a b

c

d

Is this a loop?

Is this a loop?

yes
no

Carnegie Mellon

15-745: Induction Variables 3

Important Concept: Dominance

11

1

5

6 7

8

13

2

3

4

9

10

12

1

11

5

6 7 8

2

3

4 9

10

12 13

Control
Flow Graph

Dominance Tree (D-Tree)
x sdom w iff x is a proper ancestor of w

x dominates w (x dom w) iff x sdom w OR x = w

All paths to 6, 7, or 8 must visit 5 first

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

Carnegie Mellon

• Single entry-point: header

– a header dominates all nodes in the loop

• A back edge is an arc t->h whose
head h dominates its tail t

– a back edge must be a part of
at least one loop

• The natural loop of a back edge t->h
is the smallest set of nodes that
includes t and h, and has
no predecessors outside the set,
except for the predecessors of the header h.

Natural Loops

15-745: Induction Variables 4

11

1

5

6 7

8

13

2

3

4

9

10

12

What are the back edges?

3->3 and 8->5

What are the natural loops?

highlighted in yellow above

Carnegie Mellon

I. Algorithm to Find Natural Loops

Step 1. Find the dominator relations in a flow graph

Step 2. Identify the back edges

Step 3. Find the natural loop associated with the back edge

15-745: Induction Variables 5

Carnegie Mellon

Step 1. Finding Dominators

• Node d dominates node n in a graph (d dom n)
if every path from the start node to n goes through d

• Formulated as Data Flow Analysis problem:
• node d lies on all possible paths reaching node n

iff d dom p for all pred p of n

– Direction:

– Values:

– Meet operator:

– Top (T):

– Bottom:

– Boundary condition for entry node:

– Initialization for internal nodes

– Finite descending chain?

– Transfer function:

– Monotone & Distributive?

• Speed:
• With rPostorder, most flow graphs (reducible flow graphs) converge in 1 pass

15-745: Induction Variables 6

forward

basic blocks

∩

all basic blocks

{}

OUT[entry]= {entry}

OUT[b]= T

Yes (depth=number of basic blocks)

𝑓𝑏 𝑥 = 𝑏 ∪ 𝑥

n

p1 p2

d dom p1 d dom p2

d dom n

Yes and yes: ({b} ∪ 𝑥) ∩ ({b} ∪ 𝑦) = {b} ∪ 𝑥 ∩ y

Carnegie Mellon

Example: Finding Dominators

15-745: Induction Variables 7

OUT[b]={b} U (∩ 𝒑=𝒑𝒓𝒆𝒅 𝒃 OUT[p])

ALSU 9.6.1

OUT[1] = {1}
OUT[2] = {1,2}
OUT[3] = {1,3}
OUT[4] = {1,3,4}
OUT[5] = {1,3,4,5}
OUT[6] = {1,3,4,6}
OUT[7] = {1,3,4,7}
OUT[8] = {1,3,4,7,8}
OUT[9] = {1,3,4,7,8,9}
OUT[10] = {1,3,4,7,8,10}
(No change in second iteration)

Carnegie Mellon

Step 2. Finding Back Edges

• Depth-first spanning tree

• Edges traversed in a depth-first search of the flow graph
form a depth-first spanning tree

• Categorizing edges in graph

• Advancing edges (A): from ancestor to proper descendant

• Cross edges (C): from right to left

• Retreating edges (R): from descendant to ancestor (not necessarily proper)

15-745: Induction Variables 8

A

A

A

A

AA

A

R

R

R

R

C

C

1

3

2

7

4 8

5

6

Carnegie Mellon

Back Edges

• Definition

– Back edge: t->h, h dominates t

• Relationships between graph edges and back edges

• Algorithm

– Perform a depth first search

– For each retreating edge t->h, check if h is in t’s dominator list

• Most programs (all structured code, and most GOTO programs) have reducible
flow graphs

– retreating edges = back edges

15-745: Induction Variables 9

Carnegie Mellon

Example: Cross Edges, Retreating Edges, Back Edges

15-745: Induction Variables 10

C R

C

R

R

R R

All the retreating edges
are back edges

(Back edge: t->h, h dominates t)

Which edges are:
cross edges?

retreating edges?

back edges?

Carnegie Mellon

A Nonreducible Flow Graph

15-745: Induction Variables 11

• Categorizing edges in graph (relative to a DFS tree)

• Advancing edges (A): from ancestor to proper descendant

• Cross edges (C): from right to left

• Retreating edges (R): from descendant to ancestor (not necessarily proper)

– Back edges: t->h, h dominates t

1

2 3

Dominator Tree

1

2

3
DFS Tree

not back edge

A

A

A

R

Carnegie Mellon

Step 3. Constructing Natural Loops

• The natural loop of a back edge t->h is the smallest set of nodes that
includes t and h, and has no predecessors outside the set, except for the
predecessors of the header h.

• Algorithm: For each back edge t->h:

• delete h from the flow graph

• find those nodes that can reach t
(those nodes plus h form the natural loop of t -> h)

15-745: Induction Variables 12

{7,8}

1

3

2

7

4 8

5

6

natural loop?

natural loop?

natural loop?

natural loop?

entire graph

{2,3,4,5,6,7,8}

not back edge!

Carnegie Mellon

Inner Loops

• If two loops do not have the same header:

– they are either disjoint, or

– one is entirely contained (nested within) the other

• inner loop: one that contains no other loop.

• If two loops share the same header:

– Hard to tell which is the inner loop

– Solution: Combine and treat as one loop

15-745: Induction Variables 13

a

b c

Carnegie Mellon

Preheader

• Optimizations often emit code that is to be executed once before the loop

• Solution: Create a preheader basic block for every loop

15-745: Induction Variables 14

rest of loop

header

rest of loop

header

preheader

Carnegie Mellon

Finding Loops: Summary

• Define loops in graph theoretic terms

• Definitions and algorithms for:

– Dominators

– Back edges

– Natural loops

15-745: Induction Variables 15

Carnegie Mellon

II. Overview of Induction Variable Elimination

for(i=0; i<100; i++)

A[i] = 0;

i = 0

L2: IF i>=100 GOTO L1

t1 = 4 * i

t2 = &A + t1

*t2 = 0

i = i+1

GOTO L2

L1:

15-745: Induction Variables 16

Induction variables:
t1 = 4i

t2 = 4i + &A

t1’ = 0

t2’ = &A

t1 = t1’

t2 = t2’

t1’ = t1’+4

t2’ = t2’+4

t2’ = &A

t3’ = &A + 400

L2: IF t2’>=t3’ GOTO L1

*t2’= 0

t2’ = t2’+ 4

GOTO L2

L1:

Example

IF t1’>=400

original code
(A[i] is 4 bytes) final code

after induction
variable substitution

Carnegie Mellon

Definitions

• A basic induction variable is

– a variable X whose only definitions within the loop are assignments
of the form:

X = X+c or X = X-c,

where c is either a constant or a loop-invariant variable. (e.g., i)

• An induction variable is

– a basic induction variable B, or

– a variable defined once within the loop, whose value is a linear function
of some basic induction variable at the time of the definition:
A = c1 * B + c2 (e.g., t1, t2)

• The FAMILY of a basic induction variable B is

– the set of induction variables A such that each time A is assigned in the loop,
the value of A is a linear function of B. (e.g., t1, t2 is in family of i)

1715-745: Induction Variables

Carnegie Mellon

i = 0

L2: IF i>=100 GOTO L1

t1 = 4 * i

t2 = &A + t1

*t2 = 0

i = i+1

GOTO L2

Optimizations

1. Strength reduction:

– A is an induction variable in family of basic induction variable B (i.e., A = c1 *B + c2)

• Create new variable: A’

• Initialize in preheader: A’= c1 * B + c2

• Track value of B: add after B=B+x: A’=A’+x*c1

• Replace assignment to A: replace lone A=… with A=A’

18
15-745: Induction Variables

t1’ = 0

t2’ = &A

t1 = t1’

t2 = t2’

t1’ = t1’+4

t2’ = t2’+4

Induction variables:
t1 = 4*i

t2 = 4*i + &A

Carnegie Mellon

2. Optimizing non-basic induction variables

– copy propagation

– dead code elimination

3. Optimizing basic induction variables

– Eliminate basic induction variables used only for

• calculating other induction variables and loop tests

– Algorithm:

• Select an induction variable A in the family of B, preferably with simple constants
(A = c1 * B + c2).

• Replace a comparison such as

if B > X goto L1

with

if (A’ > c1 * X + c2) goto L1 (assuming c1 is positive)

• if B is live at any exit from the loop, recompute it from A’

– After the exit, B = (A’ - c2) / c1

Optimizations (continued)

1915-745: Induction Variables

Carnegie Mellon

Example Continued

for(i=0; i<100; i++)

A[i] = 0;

i = 0

L2: IF i>=100 GOTO L1

t1 = 4 * i

t2 = &A + t1

*t2 = 0

i = i+1

GOTO L2

L1:

15-745: Induction Variables 20

Induction variables:
t1 = 4i

t2 = 4i + &A

t1’ = 0

t2’ = &A

t1 = t1’

t2 = t2’

t1’ = t1’+4

t2’ = t2’+4

t2’ = &A

t3’ = &A + 400

L2: IF t2’>=t3’ GOTO L1

*t2’= 0

t2’ = t2’+ 4

GOTO L2

L1:

IF t2’>=&A+400

*t2’= 0

Carnegie Mellon

III. Further Details

• A BASIC induction variable in a loop L

– a variable X whose only definitions within L are assignments of the form:

X = X+c or X = X-c, where c is either a constant or a loop-invariant variable.

• Algorithm: can be detected by scanning L

• Example:

k = 0;

for (i = 0; i < n; i++) {

k = k + 3;

… = m;

if (x < y)

k = k + 4;

if (a < b)

m = 2 * k;

k = k – 2;

… = m;

}

Each iteration may execute a different number of increments/decrements!!

21

Basic induction variable(s)?

m = 2k+0 (in family of k)

15-745: Induction Variables

i,k

Additional induction variable(s)?

Carnegie Mellon

Strength Reduction Algorithm

• Key idea:

– For each induction variable A, (A = c1*B+c2 at time of definition)

• variable A’ holds expression c1*B+c2 at all times

• replace definition of A with A=A’ only when executed
(m is only updated when appropriate)

• Result:

– Program is correct

– Definition of A does not need to refer to B

2215-745: Induction Variables

Carnegie Mellon

Finding Induction Variable Families

• Let B be a basic induction variable

– Find all induction variables A in family of B:

• A = c1 * B + c2

(where B refers to the value of B at time of definition)

• Conditions:

– If A has a single assignment in the loop L, and assignment is one of:

A = B * c

A = c * B

A = B / c (assuming A is real)
A = B + c

A = c + B

A = B – c

A = c – B

– OR, ... (next page)

23

(e.g., m)

15-745: Induction Variables

Carnegie Mellon

Finding Induction Variable Families (continued)

– Let D be an induction variable in the family of B (D = c1* B + c2)

Rule 1: If A has a single assignment in the loop L, and assignment is one of:

A = D * c

A = c * D

A = D / c (assuming A is real)
A = D + c

A = c + D

A = D – c

A = c – D

Rule 2: No definition of D outside L reaches the assignment to A

Rule 3: Every path between the lone point of assignment to D in L and the assignment
to A has the same sequence (possibly empty) of definitions of B

2415-745: Induction Variables

Carnegie Mellon

Induction Variable Family Example 1

25

L2: IF i>=100 GOTO L1

t2 = t1 + 10

t1 = 4 * i

t3 = t1 * 8

i = i + 1

goto L2

L1:

Is t2 in family of i?

Is t1 in family of i?

15-745: Induction Variables

no (fails rule 2)

yes

Is t3 in family of i? yes (A:t3, D:t1, B:i)

Is i a basic induction variable? yes

A is in family of B if D = c1* B + c2 for basic induction variable B and:
• A has a single assignment in the loop L of the form A = D*c, D+c, etc
• No definition of D outside L reaches the assignment to A
• Every path between the lone point of assignment to D in L and the assignment

to A has the same sequence (possibly empty) of definitions of B

Carnegie Mellon

Induction Variable Family Example 2

2615-745: Induction Variables

A is in family of B if D = c1* B + c2 for basic induction variable B and:
• A has a single assignment in the loop L of the form A = D*c, D+c, etc
• No definition of D outside L reaches the assignment to A
• Every path between the lone point of assignment to D in L and the assignment

to A has the same sequence (possibly empty) of definitions of B

L3: IF i>=100 GOTO L1

t1 = 4 * i

IF t1 < 50 GOTO L2

i = i + 2

L2: t2 = t1 + 10

i = i + 1

goto L3

L1:

Is t1 in family of i?

Is t2 in family of i?

yes

Is i a basic induction variable? yes

no (fails rule 3)

Carnegie Mellon

Induction Variables Summary

• Precise definitions of induction variables

• Systematic identification of induction variables

• Strength reduction

• Clean up:

– eliminating basic induction variables

• used in other induction variable calculations

• replacement of loop tests

– eliminating other induction variables

• standard optimizations

2715-745: Induction Variables

Carnegie Mellon

Today’s Class

2815-745: Induction Variables

Monday’s Class

Loop Invariant Code Motion ALSU 9.5-9.5.2

I. Finding loops

II. Overview of Induction Variable Optimizations

III. Further details

