Lecture 9:
Loop Invariant Computation

and Code Motion

|. Loop-invariant computation
II. Algorithm for code motion

Ill. Partial redundancy elimination

ALSU 9.5-9.5.2

Phillip B. Gibbons 15-745: Loop Invariance 1

Review: Dominators

Dominance Tree (D-Tree)
x sdom w iff x is a proper ancestor of w

Control All paths to 6, 7, or 8 must visit 5 first

Flow Graph

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

x dominates w (x dom w) iff x sdom w OR x =w

Carnegie Mellon -

15-745: Loop Invariance 2

Review: Natural Loops

Single entry-point: header

— a header dominates all nodes in the loop

A back edge is an arc t->h whose
head h dominates its tail t

— a back edge must be a part of
at least one loop

The natural loop of a back edge t->h
is the smallest set of nodes that
includes t and h, and has

no predecessors outside the set, What are the back edges?
except for the predecessors of the header h. 3->3 and 8->5

What are the natural loops?
highlighted in yellow above

Carnegie Mellon -
15-745: Loop Invariance 3

Recall: Finding Back Edges . A
2
1. Construct a depth-first spanning tree of the CFG 3‘/A A\"7
— Edges traversed in a depth-first search of the CFG . Ay
form a depth-first spanning tree 4\A 8
— Advancing edges (A): from ancestor to proper descendant R - 5
— Cross edges (©): from right to left R éA

— Retreating edges (R): from descendant to ancestor
2. Determine which Retreating edges are Back edges (t->h, h dominates t)

* Note: h can never dominate t for an advancing or cross edge t->h

t is not ancestor/descendent of h
* Thus, there is a least common ancestor, Ica,
of h and tin the tree
* Thus, entry->Ica->t is a path without h

* Could apply step 2 to all edges, skipping step 1---but rPostOrder uses step 1

15-745: Induction Variables 4

|. Loop-Invariant Computation and Code Motion

* Aloop-invariant computation:

— a computation whose value does not change as long as control stays
within the loop

 Code motion:
— to move a statement within a loop to the preheader of the loop

vy
header
B, C not defined /\

in loop A=B+C E =3 <E constant
function of = A+ 2
loop inv comp outside loop
D=A+1 hasldefinside

|

loop, 1 outside

Loop-invariant?

]
I

Carnegie Mellon -

15-745: Loop Invariance 5

-
Algorithm

* Observations
— Loop invariant

* operands are defined outside loop or invariant themselves

— Code motion

* not all loop invariant instructions can be moved to preheader

e Algorithm
— Find invariant expressions
— Conditions for code motion
— Code transformation

15-745: Loop Invariance 6

Algorithm: Detecting Loop Invariant Computation

* Compute reaching definitions

e Mark INVARIANT if
all the definitions of B and C that reach a statement A=B+C
are outside the loop

— What about a constant B, C? invariant

 Repeat: Mark INVARIANT if

— (all reaching definitions of B are outside the loop OR
there is exactly one reaching definition for B and it is from a loop-invariant
statement inside the loop)

— AND (similarly for C)
until no changes to the set of loop-invariant statements occur.

15-745: Loop Invariance 7

Which Statements are Loop Invariant?

Iy

A

B

+

C

all reaching defs of B, C

constant E =2

— T

are outside loop

E =3 constant

D
F

+
+

1
2

A
E
I

15-745: Loop Invariance

\/ one reaching def of A, from

{¥es] loop-inv. statement inside loop

(o] >1 reaching defs of E
from inside loop

Carnegie Mellon -

lI. Conditions for Code Motion

* Correctness: Movement does not change semantics of program

* Performance: Code is not slowed down

A=B+C
v —|"I OK to move?
P P — No (moved past exit)
A=B+C
.
.]

e Basicidea: defines once and for all
— control flow: once? — OK to move?

e Code dominates all exits

E=A Not loop inv.
A=B+C

— other definitions: for all?
* No other definition
— uses of the definition: for all?
 Dominates use or no other reaching defs to use

No (doesn’t
dominate use)

Carnegie Mellon -

15-745: Loop Invariance 9

-
Code Motion Algorithm

Given: a set of nodes in a loop
e Compute reaching definitions
 Compute loop invariant computation
 Compute dominators
* Find the exits of the loop (i.e. nodes with successor outside loop)
e Candidate statement for code motion:
— loop invariant
— in blocks that dominate all the exits of the loop
— assign to variable not assigned to elsewhere in the loop
— in blocks that dominate all blocks in the loop that use the variable assigned
* Perform a depth-first search of the blocks

— Move the candidate to the preheader if
all the invariant operations it depends upon have been moved

15-745: Loop Invariance 10

Code Motion Examples

vy

header Which statements can be
/\ moved to loop preheader?
A =B+ C E=3
Only E=3: only statement

\/\ dominating all exits

D=A+1 outside loop

A=B +C A=B+C
/\ D=A+1
E =2 E=3 (Although E=2, E=3 are invariant,
\/ neither is only def of E)
D=A+1
F=E+2 defines once and for all

|
Carnegie Mellon -

15-745: Loop Invariance 11

More Aggressive Optimizations

 Gamble on: most loops get executed
— When can we relax constraint of dominating all exits?

Y

Can relax if destination not live after loop
— & can compute in preheader
A=B+C w/o causing an exception
E=A+D
exit
D = ..
]

* Landing pads

While p do loop-body = if p {
Ensures preheader

preheader

repeat executes only
loop-body if enter loop

until not p;

Carnegie Mellon -

15-745: Loop Invariance 12

-
LICM Summary

* Precise definition and algorithm for loop invariant computation
* Precise algorithm for code motion

* Use of reaching definitions and dominators in optimizations

15-745: Loop Invariance 13

l1l. Partial Redundancy Elimination

e Sources of Redundancy
— Global common subexpressions
— Loop-invariant expresssions
— Partially redundant expressions

15-745: Loop Invariance 14

Recall: Global Common Subexpression Elimination

d=Db + c|VYes d=Db + c|NO d=Db + c

Which b + ¢ in bottom row is a common subexpression?

* On every path reaching p,
— expression b+c has been computed
— b, c not overwritten after the expression

A common expression may have different values on different paths!

Carnegie Mellon -

15745: Loop Invariance 15

Loop Invariant Code Motion

v v v
— — —
a=D>b+ c a=Db+c

! P

M b read () a=b + c
l
v

yes:
v | exit
t =Db + c +
|' no no
a==¢t
Can b + ¢ can be moved to header?

* Given an expression (b+c) inside a loop,
— does the value of b+c change inside the loop?
— is the code executed at least once?

15745: Loop Invariance 16

Partial Redundancy

e Partially Redundant Computation

Bl |tl a+b B2

e —

t2 = a + b B3

* Occurrence of expression E at P is partially redundant if E is partially available
there:

— Eis evaluated along at least one path to P, with no operands redefined since.

e Partially redundant expression can be eliminated if we can insert computations to
make it fully redundant.

— E.g.,inserttl = a + b inB2

15-745: Loop Invariance 17

Loop Invariants are Partial Redundancies

* Loop invariant expression is partially redundant

After:
a = .. a = ..
t2 = a + b
l a+b is not available l
a+b is available tl =a + b tl = t2

v v

As before, partially redundant computation can be eliminated if we insert
computations to make it fully redundant.

Remaining copies can be eliminated through copy propagation or more complex
analysis of partially redundant assignments.

Carnegie Mellon -

15-745: Loop Invariance 18

Partial Redundancy Elimination

N O

a=>b + c tl = b + c tl = b + ¢
\/ a=t1\A/
d=Db + c
d = tl

* Can we place calculations of b+c
such that no path re-executes the same expression?

* Partial Redundancy Elimination (PRE)

— subsumes:
* global common subexpression (full redundancy)
* |oop invariant code motion (partial redundancy for loops)

15745: Loop Invariance 19

Where Can We Insert Computations?

e Safety: never introduce a new expression along any path.

tl = a + b .
Unsafe to insert
a+b here
t3=a + b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.

— Solution: insert expression only where it is anticipated, i.e., its value computed at
point p will be used along ALL subsequent paths (more in next lecture)

* Performance: never increase the # of computations on any path.

— Under simple model, guarantees program won’t get worse.
— Reality: might increase register lifetimes, add copies, lose.

15-745: Loop Invariance 20

-
Today’s Class

|. Loop-invariant computation
II. Algorithm for code motion

Ill. Partial redundancy elimination

Wednesday’s Class

* Lazy Code Motion
— ALSU 9.5.3-9.5.5

15-745: Loop Invariance 21

