Lecture 13

Pointer Analysis

- Basics
- Design Options
- Pointer Analysis Algorithms
- Pointer Analysis Using BDDs
- Probabilistic Pointer Analysis

[ALSU 12.4, 12.6-12.7]

Pros and Cons of Pointers

- Many procedural languages have pointers
 - e.g., C or C++: int *p = &x;
- Pointers are powerful and convenient
 - can build arbitrary data structures
- Pointers can also hinder compiler optimization
 - hard to know where pointers are pointing
 - must be conservative in their presence
- Has inspired much research
 - analyses to decide where pointers are pointing
 - many options and trade-offs
 - open problem: a scalable accurate analysis

I. Pointer Analysis Basics: Aliases

- Two variables are aliases if:
 - they reference the same memory location
- More useful:
 - prove variables reference different locations

int x,y; int *p = &x; int *q = &y; int *r = p; int **s = &q;

What are the Alias sets?

p and q point to different locations

The Pointer Alias Analysis Problem

- Decide for every pair of pointers at every program point:
 - do they point to the same memory location?
- A difficult problem
 - shown to be undecidable by Landi, 1992
- Correctness:
 - report all pairs of pointers which do/may alias
- Ambiguous:
 - two pointers which may or may not alias
- Accuracy/Precision:
 - how few pairs of pointers are reported while remaining correct
 - i.e., reduce ambiguity to improve accuracy

Many Uses of Pointer Analysis

- Basic compiler optimizations
 - register allocation, CSE, dead code elimination, live variables, instruction scheduling, loop invariant code motion, redundant load/store elimination
- Parallelization
 - instruction-level parallelism
 - thread-level parallelism
- Behavioral synthesis
 - automatically converting C-code into gates
- Error detection and program understanding
 - memory leaks, wild pointers, security holes

Challenges for Pointer Analysis

- Complexity: huge in space and time
 - compare every pointer with every other pointer
 - at every program point
 - potentially considering all program paths to that point
- Scalability vs accuracy trade-off
 - different analyses motivated for different purposes
 - many useful algorithms (adds to confusion)
- Coding corner cases
 - pointer arithmetic (*p++), casting, function pointers, long-jumps
- Whole program?
 - most analysis algorithms require the entire program
 - library code? optimizing at link-time only?

II. Pointer Analysis: Design Options

- Representation
- Heap modeling
- Aggregate modeling (e.g., arrays, structs)
- Flow sensitivity
- Context sensitivity

Representation

Track aliases

- More precise, less efficient

- Track points-to information

 - Less precise, more efficient. Why?

Flow-insensitive: includes unneeded e -> c edge

Heap Modeling Options

- Heap merged
 - i.e. "no heap modeling"
- Allocation site (any call to malloc/calloc)
 - Consider each to be a unique location
 - Doesn't differentiate between multiple objects allocated by the same allocation site
- Shape analysis
 - Recognize linked lists, trees, DAGs, etc.

Aggregate Modeling Options

What are the trade-offs?

Flow Sensitivity Options

Flow insensitive

- The order of statements doesn't matter
 - Result of analysis is the same regardless of statement order
- Uses a single global state to store results as they are computed
- Fast, but not very accurate

Flow sensitive

- The order of the statements matter
- Need a control flow graph
- Must store results for each program point
- Improves accuracy

Path sensitive

- Each path in a control flow graph is considered
- If-then-else implies mutually exclusive paths

Flow Sensitivity Example

(assuming allocation-site heap modeling)

```
Flow Insensitive
```

```
a<sub>S7</sub> → {heapS1, heapS2, heapS4, heapS6}
```

Flow Sensitive

```
a<sub>S7</sub> → {heapS2, heapS4, heapS6}
```

Path Sensitive

```
a_{S7} \rightarrow \{\text{heapS2}, \text{heapS6}\}
```

Context Sensitivity Options

- Context insensitive/sensitive (interprocedural analysis)
 - whether to consider different calling contexts
 - e.g., what are the possibilities for p at S6?

Context Insensitive:

$$p_{S6} \Rightarrow \{a,b\}$$

Context Sensitive:

Called from S3: $p_{S6} \Rightarrow \{a\}$

Called from S5: $p_{S6} \Rightarrow \{b\}$

Pointer Alias Analysis Algorithms

Extensive Literature:

- "Program Analysis and Specialization for the C Programming Language", Andersen, Technical Report, 1994
- "Context-sensitive interprocedural points-to analysis in the presence of function pointers", Emami et al., PLDI 1994
- "Points-to analysis in almost linear time", Steensgaard, POPL 1996
- "Which pointer analysis should I use?", Hind et al., ISSTA 2000
- "Pointer analysis: haven't we solved this problem yet?", Hind, PASTE 2001
- ...
- "Introspective analysis: context-sensitivity, across the board", Smaragdakis et al., PLDI 2014
- "Sparse flow-sensitive pointer analysis for multithreaded programs", Sui et al., CGO 2016
- "Symbolic range analysis of pointers", Paisante et al., CGO 2016

Address Taken

- Basic, fast, ultra-conservative algorithm
 - flow-insensitive, context-insensitive
 - often used in production compilers
- Algorithm:
 - Generate the set of all variables whose addresses are assigned to another variable.
 - Assume that any pointer can potentially point to any variable in that set.
- <u>Complexity</u>: O(n) linear in size of program
- Accuracy: very imprecise

Address Taken Example

```
T *p, *q, *r;

int main() {
    S1: p = alloc(T);
        f();
        g(&p);
    S4: p = alloc(T);
    S5: ... = *p;
}
```

```
void f() {
S6: q = alloc(T);
    g(&q);
S8: r = alloc(T);
}
```

```
g(T **fp) {
    T local;
    if(...)
        p = &local;
s9: ... = *p;
}
```

```
\mathbf{p_{S5}} = {heapS1, p, heapS4, heapS6, q, heapS8, local}
\mathbf{p_{S9}} = {heapS1, p, heapS4, heapS6, q, heapS8, local}
```

Andersen's Algorithm

- Flow-insensitive, context-insensitive, iterative
- Representation:
 - one points-to graph for entire program
 - each node represents exactly one location
- For each statement, build the points-to graph:

y = &x	y points-to x
y = x	if x points-to w then y points-to w
*y = x	if y points-to z and x points-to w then z points-to w
y = *x	if x points-to z and z points-to w then y points-to w

- Iterate until graph no longer changes
- Worst case complexity: O(n³), where n = program size

Andersen Example

```
T *p, *q, *r;

int main() {
1 S1: p = alloc(T);
    f();
    g(&p);
3 S4: p = alloc(T);
    S5: ... = *p;
}
```

```
void f() {
4     S6: q = alloc(T);
5         g(&q);
6     S8: r = alloc(T);
}
```

```
g(T **fp) {
    T local;
    if(...)

    p = &local;

    S9: ... = *p;
}
```

```
\mathbf{p_{s5}} = {heapS1, heapS4, local}
\mathbf{p_{s9}} = {heapS1, heapS4, local}
```


Steensgaard's Algorithm

- Flow-insensitive, context-insensitive
- Representation:
 - a compact points-to graph for entire program
 - each node can represent multiple locations
 - but can only point to one other node
 - i.e. every node has a fan-out of 1 or 0
- union-find data structure implements fan-out
 - "unioning" while finding eliminates need to iterate
- Worst case complexity: nearly O(n) time
 - each union-find operation takes nearly O(1) time
- <u>Precision</u>: less precise than Andersen's

Steensgaard Example

```
T *p, *q, *r;

int main() {
1 S1: p = alloc(T);
   f();
2  g(&p);
3 S4: p = alloc(T);
S5: ... = *p;
}
```

```
void f() {
4     S6: q = alloc(T);
5         g(&q);
6     S8: r = alloc(T);
}
```

```
g(T **fp) {
    T local;
    if(...)

p = &local;

s9: ... = *p;
}
```


P_{S5} = {heapS1, heapS4, heapS6, local}

 $P_{S9} = \{\text{heapS1}, \text{heapS4}, \text{heapS6}, \text{local}\}$

Example with Flow Sensitivity (Precise Analysis)

```
T *p, *q, *r;

int main() {
    S1: p = alloc(T);
        f();
        g(&p);
    S4: p = alloc(T);
    S5: ... = *p;
}
```

```
void f() {
S6: q = alloc(T);
    g(&q);
S8: r = alloc(T);
}
```

```
g(T **fp) {
    T local;
    if(...)
        p = &local;

$9: ... = *p;
}
```

```
P_{S5} = \{\text{heapS4}\}
```

$$P_{S9} = \{local, heapS1\}$$

How can this analysis be made more precise? Add path-sensitivity, context-sensitivity

Pointer Analysis Using BDDs

References:

- "Cloning-based context-sensitive pointer alias analysis using binary decision diagrams", Whaley and Lam, PLDI 2004
- "Symbolic pointer analysis revisited", Zhu and Calman, PDLI 2004
- "Points-to analysis using BDDs", Berndl et al, PDLI 2003

Binary Decision Diagram (BDD)

BDD-Based Pointer Analysis

- Use a BDD to represent transfer functions
 - encode procedure as a function of its calling context
 - compact and efficient representation
- Perform context-sensitive, inter-procedural analysis
 - similar to dataflow analysis
 - but across the procedure call graph
- Gives accurate results
 - and scales up to large programs

Probabilistic Pointer Analysis

References:

- "A Probabilistic Pointer Analysis for Speculative Optimizations", DaSilva and Steffan, ASPLOS 2006
- "Compiler support for speculative multithreading architecture with probabilistic points-to analysis", Shen et al., PPoPP 2003
- "Speculative Alias Analysis for Executable Code", Fernandez and Espasa, PACT 2002
- "A General Compiler Framework for Speculative Optimizations Using Data Speculative Code Motion", Dai et al., CGO 2005
- "Speculative register promotion using Advanced Load Address Table (ALAT)", Lin et al., CGO 2003

Pointer Analysis: Yes, No, & Maybe

- Do pointers a and b point to the same location?
 - Repeat for every pair of pointers at every program point
- How can we optimize the "maybe" cases?

Let's Speculate

- Implement a potentially unsafe optimization
 - Verify and Recover if necessary

```
int *a, x;
...
while(...)
{
    x = *a;
    ...
}
```


a is *probably* loop invariant

```
int *a, x, tmp;
...
tmp = *a;
while(...)
{
    x = tmp;
    ...
}
<verify, recover?>
```

Data Speculative Optimizations

- EPIC Instruction sets
 - Support for speculative load/store instructions (e.g., Itanium)
- Speculative compiler optimizations
 - Dead store elimination, redundancy elimination, copy propagation, strength reduction, register promotion
- Thread-level speculation (TLS)
 - Hardware and compiler support for speculative parallel threads
- Transactional programming
 - Hardware and software support for speculative parallel transactions

Heavy reliance on detailed profile feedback

Can We Quantify "Maybe"?

Estimate the potential benefit for speculating:

Ideally "maybe" should be a probability.

Conventional Pointer Analysis

- Do pointers **a** and **b** point to the same location?
 - Repeat for every pair of pointers at every program point

Probabilistic Pointer Analysis

- Potential advantage of Probabilistic Pointer Analysis:
 - it doesn't need to be safe

Probabilistic Pointer Analysis Research Objectives

- Accurate points-to probability information
 - at every static pointer dereference
- Scalable analysis
 - Goal: entire SPEC integer benchmark suite
- Understand scalability/accuracy tradeoff
 - through flexible static memory model

Improve our understanding of programs

Algorithm Design Choices

Fixed:

- Bottom Up / Top Down Approach
- Linear transfer functions (for scalability)
- One-level context and flow sensitive

Flexible:

- Edge profiling (or static prediction)
- Safe (or unsafe)
- Field sensitive (or field insensitive)

Traditional Points-To Graph

```
int x, y, z, *b = &x;
void foo(int *a) {
  if(...)
    b = &y;
  if(...)
    a = \&z;
  else(...)
    a = b;
  while(...) {
    x = *a;
```


Results are inconclusive

Probabilistic Points-To Graph

```
int x, y, z, *b = &x;
void foo(int *a) {
  if(...) \Rightarrow 0.1 taken(edge profile)
    b = &y;
  if(...) \Rightarrow 0.2 taken(edge profile)
    a = \&z;
  else
    a = b;
  while(...) {
    x = *a;
```


Results provide more information

Probabilistic Pointer Analysis Results Summary

- Matrix-based, transfer function approach
 - SUIF/Matlab implementation
- Scales to the SPECint 95/2000 benchmarks
 - One-level context and flow sensitive
- As accurate as the most precise algorithms
- Interesting result:
 - ~90% of pointers tend to point to only one thing

Pointer Analysis Summary

- Pointers are hard to understand at compile time!
 - Accurate analyses are large and complex
- Many different options:
 - Representation, heap modeling, aggregate modeling, flow sensitivity, context sensitivity
 - Multi-threaded code
- Many algorithms:
 - Address-taken, Anderson, Steensgarde, etc
 - BDD-based, probabilistic
- Many trade-offs:
 - Space, time, accuracy, safety

Choose the right type of analysis given how the information will be used

Today's Class

- Basics
- Design Options
- Pointer Analysis Algorithms
- Pointer Analysis Using BDDs
- Probabilistic Pointer Analysis

Monday's Class

Dynamic Code Optimization