
Carnegie Mellon

Lecture 13

Pointer Analysis

• Basics

• Design Options

• Pointer Analysis Algorithms

• Pointer Analysis Using BDDs

• Probabilistic Pointer Analysis

Phillip B. Gibbons 15-745: Pointer Analysis 1

[ALSU 12.4, 12.6-12.7]

Carnegie Mellon

Pros and Cons of Pointers

• Many procedural languages have pointers

– e.g., C or C++: int *p = &x;

• Pointers are powerful and convenient

– can build arbitrary data structures

• Pointers can also hinder compiler optimization

– hard to know where pointers are pointing

– must be conservative in their presence

• Has inspired much research

– analyses to decide where pointers are pointing

– many options and trade-offs

– open problem: a scalable accurate analysis

15-745: Pointer Analysis 2

Carnegie Mellon

I. Pointer Analysis Basics: Aliases

• Two variables are aliases if:

– they reference the same memory location

• More useful:

– prove variables reference different locations

15-745: Pointer Analysis 3

int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

What are the Alias sets?

{x, *p, *r}

{y, *q, **s}

{q, *s}

p and q point to different locations

Carnegie Mellon

The Pointer Alias Analysis Problem

• Decide for every pair of pointers at every program point:

– do they point to the same memory location?

• A difficult problem

– shown to be undecidable by Landi, 1992

• Correctness:

– report all pairs of pointers which do/may alias

• Ambiguous:

– two pointers which may or may not alias

• Accuracy/Precision:

– how few pairs of pointers are reported while remaining correct

– i.e., reduce ambiguity to improve accuracy

15-745: Pointer Analysis 4

Carnegie Mellon

Many Uses of Pointer Analysis

• Basic compiler optimizations

– register allocation, CSE, dead code elimination, live variables, instruction
scheduling, loop invariant code motion, redundant load/store elimination

• Parallelization

– instruction-level parallelism

– thread-level parallelism

• Behavioral synthesis

– automatically converting C-code into gates

• Error detection and program understanding

– memory leaks, wild pointers, security holes

15-745: Pointer Analysis 5

Carnegie Mellon

Challenges for Pointer Analysis

• Complexity: huge in space and time

– compare every pointer with every other pointer

– at every program point

– potentially considering all program paths to that point

• Scalability vs accuracy trade-off

– different analyses motivated for different purposes

– many useful algorithms (adds to confusion)

• Coding corner cases

– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?

– most analysis algorithms require the entire program

– library code? optimizing at link-time only?

15-745: Pointer Analysis 6

Carnegie Mellon

II. Pointer Analysis: Design Options

• Representation

• Heap modeling

• Aggregate modeling (e.g., arrays, structs)

• Flow sensitivity

• Context sensitivity

15-745: Pointer Analysis 7

Carnegie Mellon

Representation

• Track aliases

– <*a, b>, <*b, c>, <**a, c>,
<**a, *b>, <*b, d>, <**a, d>,
<*b, *e>, <**a, *e>, <*e, d>

– More precise, less efficient

• Track points-to information

– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>

– Less precise, more efficient. Why?

15-745: Pointer Analysis 8

a = &b;

b = &c;

b = &d;

e = b;

a *a

b e

**a

*e

dc

*b

a b c

de

Flow-insensitive:
includes unneeded

e -> c edge

Carnegie Mellon

Heap Modeling Options

• Heap merged

– i.e. “no heap modeling”

• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location

– Doesn’t differentiate between multiple objects allocated by the same
allocation site

• Shape analysis

– Recognize linked lists, trees, DAGs, etc.

15-745: Pointer Analysis 9

Carnegie Mellon

Aggregate Modeling Options

Arrays

15-745: Pointer Analysis 10

…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the trade-offs?

Carnegie Mellon

Flow Sensitivity Options

• Flow insensitive

– The order of statements doesn’t matter

• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed

– Fast, but not very accurate

• Flow sensitive

– The order of the statements matter

– Need a control flow graph

– Must store results for each program point

– Improves accuracy

• Path sensitive

– Each path in a control flow graph is considered

– If-then-else implies mutually exclusive paths

15-745: Pointer Analysis 11

Carnegie Mellon

Flow Sensitivity Example

(assuming allocation-site heap modeling)

15-745: Pointer Analysis 12

S1: a = malloc(…);

S2: b = malloc(…);

S3: a = b;

S4: a = malloc(…);

S5: if(c)

a = b;

S6: if(!c)

a = malloc(…);

S7: … = *a;

Flow Insensitive
aS7 →

Flow Sensitive
aS7 →

Path Sensitive
aS7 →

{heapS1, heapS2, heapS4, heapS6}

{heapS2, heapS4, heapS6}

{heapS2, heapS6}

Carnegie Mellon

int a, b, *p;

int main()

{

S1: f();

S2: p = &a;

S3: g();

}

Context Sensitivity Options

• Context insensitive/sensitive (interprocedural analysis)

– whether to consider different calling contexts

– e.g., what are the possibilities for p at S6?

15-745: Pointer Analysis 13

int f()

{

S4: p = &b;

S5: g();

}

int g()

{

S6: … = *p;

}

Context Insensitive:

Context Sensitive:

p𝑆6 ⇒ {a,b}

Called from S3: p𝑆6 ⇒ {a}

Called from S5: p𝑆6 ⇒ {b}

Carnegie Mellon

Pointer Alias Analysis Algorithms

Extensive Literature:

• “Program Analysis and Specialization for the C Programming Language”,
Andersen, Technical Report, 1994

• “Context-sensitive interprocedural points-to analysis in the presence of function
pointers”, Emami et al., PLDI 1994

• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996

• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000

• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001

• …

• “Introspective analysis: context-sensitivity, across the board”, Smaragdakis et al.,
PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et al., CGO
2016

• “Symbolic range analysis of pointers”, Paisante et al., CGO 2016

15-745: Pointer Analysis 14

Carnegie Mellon

Address Taken

• Basic, fast, ultra-conservative algorithm

– flow-insensitive, context-insensitive

– often used in production compilers

• Algorithm:

– Generate the set of all variables whose addresses are assigned to another
variable.

– Assume that any pointer can potentially point to any variable in that set.

• Complexity: O(n) - linear in size of program

• Accuracy: very imprecise

15-745: Pointer Analysis 15

Carnegie Mellon

Address Taken Example

pS5 =

pS9 =

15-745: Pointer Analysis 16

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

p = &local;

S9: … = *p;

}

{heapS1, p, heapS4, heapS6, q, heapS8, local}

{heapS1, p, heapS4, heapS6, q, heapS8, local}

Carnegie Mellon

Andersen’s Algorithm

• Flow-insensitive, context-insensitive, iterative

• Representation:

– one points-to graph for entire program

– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes

• Worst case complexity: O(n3), where n = program size

15-745: Pointer Analysis 17

y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w

Carnegie Mellon

Andersen Example

pS5 =

pS9 =

15-745: Pointer Analysis 18

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

p = &local;

S9: … = *p;

}

{heapS1, heapS4, local}

1

2

3

4

5

6
7

p

fp

2
heapS11

heapS4
3

7

local q
4

heapS6

5

r
6

heapS8{heapS1, heapS4, local}

Carnegie Mellon

Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive

• Representation:

– a compact points-to graph for entire program

• each node can represent multiple locations

• but can only point to one other node

– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out

– “unioning” while finding eliminates need to iterate

• Worst case complexity: nearly O(n) time

– each union-find operation takes nearly O(1) time

• Precision: less precise than Andersen’s

15-745: Pointer Analysis 19

Carnegie Mellon

Steensgaard Example

pS5 =

pS9 =

15-745: Pointer Analysis 20

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

p = &local;

S9: … = *p;

}

{heapS1, heapS4, heapS6, local}

1

2

3

4

5

6
7

p,q

fp

2,5

heapS1
heapS4
heapS6

local

1,3,4,7

r 6
heapS8

{heapS1, heapS4, heapS6, local}

Carnegie Mellon

Example with Flow Sensitivity (Precise Analysis)

pS5 =

15-745: Pointer Analysis 21

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

p = &local;

S9: … = *p;

}

pS9 ={heapS4} {local, heapS1}

Add path-sensitivity, context-sensitivityHow can this analysis be made more precise?

Carnegie Mellon

Pointer Analysis Using BDDs

References:

• “Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams”, Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al, PDLI 2003

15-745: Pointer Analysis 22

Carnegie Mellon

Binary Decision Diagram (BDD)

15-745: Pointer Analysis 23

Binary Decision Tree Truth Table BDD

Carnegie Mellon

BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions

– encode procedure as a function of its calling context

– compact and efficient representation

• Perform context-sensitive, inter-procedural analysis

– similar to dataflow analysis

– but across the procedure call graph

• Gives accurate results

– and scales up to large programs

15-745: Pointer Analysis 24

Carnegie Mellon

Probabilistic Pointer Analysis

References:

• “A Probabilistic Pointer Analysis for Speculative Optimizations”, DaSilva and
Steffan, ASPLOS 2006

• “Compiler support for speculative multithreading architecture with probabilistic
points-to analysis”, Shen et al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez and Espasa, PACT 2002

• “A General Compiler Framework for Speculative Optimizations Using Data
Speculative Code Motion”, Dai et al., CGO 2005

• “Speculative register promotion using Advanced Load Address Table (ALAT)”, Lin et
al., CGO 2003

15-745: Pointer Analysis 25

Carnegie Mellon

Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?

– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases?

15-745: Pointer Analysis 26

*a = ~

~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b

Carnegie Mellon

Let’s Speculate

• Implement a potentially unsafe optimization

– Verify and Recover if necessary

15-745: Pointer Analysis 27

int *a, x;

…

while(…)

{

x = *a;

…

} a is probably

loop invariant

int *a, x, tmp;

…

tmp = *a;

while(…)

{

x = tmp;

…

}

<verify, recover?>

Carnegie Mellon

Data Speculative Optimizations

• EPIC Instruction sets

– Support for speculative load/store instructions (e.g., Itanium)

• Speculative compiler optimizations

– Dead store elimination, redundancy elimination, copy propagation, strength
reduction, register promotion

• Thread-level speculation (TLS)

– Hardware and compiler support for speculative parallel threads

• Transactional programming

– Hardware and software support for speculative parallel transactions

Heavy reliance on detailed profile feedback

15-745: Pointer Analysis 28

Carnegie Mellon

Can We Quantify “Maybe”?

• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.

15-745: Pointer Analysis 29

Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success

Carnegie Mellon

Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?

– Repeat for every pair of pointers at every program point

15-745: Pointer Analysis 30

*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b

Carnegie Mellon

Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer Analysis:

– it doesn’t need to be safe

15-745: Pointer Analysis 31

*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b

Carnegie Mellon

Probabilistic Pointer Analysis Research Objectives

• Accurate points-to probability information

– at every static pointer dereference

• Scalable analysis

– Goal: entire SPEC integer benchmark suite

• Understand scalability/accuracy tradeoff

– through flexible static memory model

Improve our understanding of programs

15-745: Pointer Analysis 32

Carnegie Mellon

Algorithm Design Choices

Fixed:

• Bottom Up / Top Down Approach

• Linear transfer functions (for scalability)

• One-level context and flow sensitive

Flexible:

• Edge profiling (or static prediction)

• Safe (or unsafe)

• Field sensitive (or field insensitive)

15-745: Pointer Analysis 33

Carnegie Mellon

Traditional Points-To Graph

int x, y, z, *b = &x;

void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else(…)
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive

15-745: Pointer Analysis 34

Carnegie Mellon

Probabilistic Points-To Graph

int x, y, z, *b = &x;

void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

0.1 taken(edge profile)

0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information

15-745: Pointer Analysis 35

Carnegie Mellon

Probabilistic Pointer Analysis Results Summary

• Matrix-based, transfer function approach

– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks

– One-level context and flow sensitive

• As accurate as the most precise algorithms

• Interesting result:

– ~90% of pointers tend to point to only one thing

15-745: Pointer Analysis 36

Carnegie Mellon

Pointer Analysis Summary

• Pointers are hard to understand at compile time!

– Accurate analyses are large and complex

• Many different options:

– Representation, heap modeling, aggregate modeling, flow sensitivity, context
sensitivity

– Multi-threaded code

• Many algorithms:

– Address-taken, Anderson, Steensgarde, etc

– BDD-based, probabilistic

• Many trade-offs:

– Space, time, accuracy, safety

Choose the right type of analysis given how the information will be used

15-745: Pointer Analysis 37

Carnegie Mellon

Today’s Class

3815-745: Pointer Analysis

Monday’s Class

• Dynamic Code Optimization

