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Pros and Cons of Pointers

• Many procedural languages have pointers

– e.g., C or C++: int *p = &x;

• Pointers are powerful and convenient

– can build arbitrary data structures

• Pointers can also hinder compiler optimization

– hard to know where pointers are pointing

– must be conservative in their presence

• Has inspired much research

– analyses to decide where pointers are pointing

– many options and trade-offs

– open problem: a scalable accurate analysis
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I. Pointer Analysis Basics: Aliases

• Two variables are aliases if:

– they reference the same memory location

• More useful:

– prove variables reference different locations

15-745: Pointer Analysis 3

int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

What are the Alias sets?

{x, *p, *r}

{y, *q, **s}

{q, *s}

p and q point to different locations
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The Pointer Alias Analysis Problem

• Decide for every pair of pointers at every program point:

– do they point to the same memory location?

• A difficult problem

– shown to be undecidable by Landi, 1992

• Correctness:

– report all pairs of pointers which do/may alias

• Ambiguous:

– two pointers which may or may not alias

• Accuracy/Precision:

– how few pairs of pointers are reported while remaining correct

– i.e., reduce ambiguity to improve accuracy
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Many Uses of Pointer Analysis

• Basic compiler optimizations

– register allocation, CSE, dead code elimination, live variables, instruction 
scheduling, loop invariant code motion, redundant load/store elimination

• Parallelization

– instruction-level parallelism

– thread-level parallelism

• Behavioral synthesis

– automatically converting C-code into gates

• Error detection and program understanding

– memory leaks, wild pointers, security holes
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Challenges for Pointer Analysis

• Complexity: huge in space and time

– compare every pointer with every other pointer

– at every program point

– potentially considering all program paths to that point

• Scalability vs accuracy trade-off

– different analyses motivated for different purposes

– many useful algorithms (adds to confusion)

• Coding corner cases

– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?

– most analysis algorithms require the entire program

– library code?  optimizing at link-time only?

15-745: Pointer Analysis 6



Carnegie Mellon

II. Pointer Analysis: Design Options

• Representation

• Heap modeling

• Aggregate modeling (e.g., arrays, structs) 

• Flow sensitivity

• Context sensitivity
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Representation

• Track aliases

– <*a, b>, <*b, c>, <**a, c>, 
<**a, *b>, <*b, d>, <**a, d>,
<*b, *e>, <**a, *e>, <*e, d>

– More precise, less efficient

• Track points-to information

– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>

– Less precise, more efficient.  Why?
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a = &b;

b = &c;

b = &d;

e = b;

a *a

b e

**a

*e

dc

*b

a b c

de

Flow-insensitive:
includes unneeded

e -> c edge 
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Heap Modeling Options

• Heap merged

– i.e. “no heap modeling”

• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location

– Doesn’t differentiate between multiple objects allocated by the same 
allocation site

• Shape analysis

– Recognize linked lists, trees, DAGs, etc.
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Aggregate Modeling Options

Arrays
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…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a 
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the trade-offs?
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Flow Sensitivity Options

• Flow insensitive

– The order of statements doesn’t matter

• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed

– Fast, but not very accurate

• Flow sensitive

– The order of the statements matter

– Need a control flow graph

– Must store results for each program point

– Improves accuracy

• Path sensitive

– Each path in a control flow graph is considered

– If-then-else implies mutually exclusive paths
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Flow Sensitivity Example

(assuming allocation-site heap modeling)
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S1: a = malloc(…);

S2: b = malloc(…);

S3: a = b;

S4: a = malloc(…); 

S5: if(c)

a = b;

S6: if(!c)

a = malloc(…);

S7: … = *a;

Flow Insensitive
aS7 →

Flow Sensitive
aS7 →

Path Sensitive
aS7 →

{heapS1, heapS2, heapS4, heapS6}

{heapS2, heapS4, heapS6}

{heapS2, heapS6}
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int a, b, *p;

int main() 

{

S1: f();

S2: p = &a;

S3: g();

}

Context Sensitivity Options

• Context insensitive/sensitive (interprocedural analysis)

– whether to consider different calling contexts

– e.g., what are the possibilities for p at S6?
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int f() 

{

S4: p = &b;

S5: g();

}

int g() 

{

S6: … = *p;

}

Context Insensitive:

Context Sensitive:

p𝑆6 ⇒ {a,b}

Called from S3: p𝑆6 ⇒ {a}

Called from S5: p𝑆6 ⇒ {b}
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Pointer Alias Analysis Algorithms

Extensive Literature:

• “Program Analysis and Specialization for the C Programming Language”, 
Andersen, Technical Report, 1994

• “Context-sensitive interprocedural points-to analysis in the presence of function 
pointers”, Emami et al., PLDI 1994

• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996

• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000

• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001

• …

• “Introspective analysis: context-sensitivity, across the board”, Smaragdakis et al., 
PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et al., CGO 
2016

• “Symbolic range analysis of pointers”, Paisante et al., CGO 2016
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Address Taken

• Basic, fast, ultra-conservative algorithm

– flow-insensitive, context-insensitive

– often used in production compilers

• Algorithm:

– Generate the set of all variables whose addresses are assigned to another 
variable.

– Assume that any pointer can potentially point to any variable in that set.

• Complexity: O(n) - linear in size of program

• Accuracy: very imprecise
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Address Taken Example

pS5 =

pS9 =

15-745: Pointer Analysis 16

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);  

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);  

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)  

p = &local;

S9: … = *p;

}

{heapS1, p, heapS4, heapS6, q, heapS8, local}

{heapS1, p, heapS4, heapS6, q, heapS8, local}
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Andersen’s Algorithm

• Flow-insensitive, context-insensitive, iterative 

• Representation:

– one points-to graph for entire program

– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes

• Worst case complexity: O(n3), where n = program size
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y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w
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Andersen Example

pS5 =

pS9 =
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T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);  

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);  

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)  

p = &local;

S9: … = *p;

}

{heapS1, heapS4, local}

1

2

3

4

5

6
7

p

fp

2
heapS11

heapS4
3

7

local  q
4

heapS6

5

r
6

heapS8{heapS1, heapS4, local}
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Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive

• Representation: 

– a compact points-to graph for entire program

• each node can represent multiple locations

• but can only point to one other node 

– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out

– “unioning” while finding eliminates need to iterate

• Worst case complexity: nearly O(n) time

– each union-find operation takes nearly O(1) time

• Precision: less precise than Andersen’s
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Steensgaard Example

pS5 =

pS9 =
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T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);  

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);  

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)  

p = &local;

S9: … = *p;

}

{heapS1, heapS4, heapS6, local}

1

2

3

4

5

6
7

p,q

fp

2,5

heapS1
heapS4
heapS6

local

1,3,4,7

r 6
heapS8

{heapS1, heapS4, heapS6, local}
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Example with Flow Sensitivity (Precise Analysis)

pS5 =
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T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);  

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);  

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)  

p = &local;

S9: … = *p;

}

pS9 ={heapS4} {local, heapS1}

Add path-sensitivity, context-sensitivityHow can this analysis be made more precise?
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Pointer Analysis Using BDDs

References:

• “Cloning-based context-sensitive pointer alias analysis using binary decision 
diagrams”, Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al, PDLI 2003
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Binary Decision Diagram (BDD)
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Binary Decision Tree Truth Table BDD
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BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions 

– encode procedure as a function of its calling context

– compact and efficient representation

• Perform context-sensitive, inter-procedural analysis

– similar to dataflow analysis

– but across the procedure call graph

• Gives accurate results

– and scales up to large programs
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Probabilistic Pointer Analysis

References:

• “A Probabilistic Pointer Analysis for Speculative Optimizations”, DaSilva and 
Steffan, ASPLOS 2006

• “Compiler support for speculative multithreading architecture with probabilistic 
points-to analysis”, Shen et al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez and Espasa, PACT 2002

• “A General Compiler Framework for Speculative Optimizations Using Data 
Speculative Code Motion”, Dai et al., CGO 2005

• “Speculative register promotion using Advanced Load Address Table (ALAT)”, Lin et 
al., CGO 2003
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Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?

– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases? 
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*a = ~

~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b
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Let’s Speculate

• Implement a potentially unsafe optimization

– Verify and Recover if necessary
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int *a, x;

…

while(…)

{

x = *a; 

…

} a is probably 

loop invariant

int *a, x, tmp;

…

tmp = *a;

while(…)

{

x = tmp; 

…

} 

<verify, recover?>
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Data Speculative Optimizations

• EPIC Instruction sets

– Support for speculative load/store instructions (e.g., Itanium)

• Speculative compiler optimizations

– Dead store elimination, redundancy elimination, copy propagation, strength 
reduction, register promotion

• Thread-level speculation (TLS) 

– Hardware and compiler support for speculative parallel threads

• Transactional programming

– Hardware and software support for speculative parallel transactions

Heavy reliance on detailed profile feedback
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Can We Quantify “Maybe”?

• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.
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Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success
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Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?

– Repeat for every pair of pointers at every program point
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*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b
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Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer Analysis:

– it doesn’t need to be safe
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*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b
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Probabilistic Pointer Analysis Research Objectives

• Accurate points-to probability information

– at every static pointer dereference

• Scalable analysis 

– Goal: entire SPEC integer benchmark suite

• Understand scalability/accuracy tradeoff

– through flexible static memory model

Improve our understanding of programs
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Algorithm Design Choices

Fixed:

• Bottom Up / Top Down Approach

• Linear transfer functions (for scalability)

• One-level context and flow sensitive

Flexible:

• Edge profiling (or static prediction)

• Safe (or unsafe)

• Field sensitive (or field insensitive)
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Traditional Points-To Graph

int x, y, z, *b = &x;

void foo(int *a) {

if(…) 
b = &y;

if(…)
a = &z;

else(…)  
a = b; 

while(…) {
x = *a;
…

}
} 

y UND

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive
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Probabilistic Points-To Graph

int x, y, z, *b = &x;

void foo(int *a) {

if(…) 
b = &y;

if(…)
a = &z;

else  
a = b; 

while(…) {
x = *a;
…

}
} 

y UND

a

z

b

x

0.1 taken(edge profile)

0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information
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Probabilistic Pointer Analysis Results Summary

• Matrix-based, transfer function approach

– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks

– One-level context and flow sensitive

• As accurate as the most precise algorithms

• Interesting result:

– ~90% of pointers tend to point to only one thing
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Pointer Analysis Summary

• Pointers are hard to understand at compile time!

– Accurate analyses are large and complex

• Many different options:

– Representation, heap modeling, aggregate modeling, flow sensitivity, context 
sensitivity

– Multi-threaded code

• Many algorithms:

– Address-taken, Anderson, Steensgarde, etc

– BDD-based, probabilistic

• Many trade-offs:

– Space, time, accuracy, safety

Choose the right type of analysis given how the information will be used
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Today’s Class

3815-745: Pointer Analysis

Monday’s Class

• Dynamic Code Optimization


