
Carnegie Mellon

15-745: Memory Hierarchy Optimizations Phillip B. Gibbons

Lecture 15:

Memory Hierarchy Optimizations

ALSU 7.4.2-7.4.3, 11.2-11.5.1

I. Caches: A Quick Review
II. Iteration Space & Loop Transformations
III. Intro to Locality Analysis

15-745: Memory Hierarchy Optimizations 2

Carnegie Mellon

I. Caches: A Quick Review

• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that will affect
performance?

15-745: Memory Hierarchy Optimizations 3

Carnegie Mellon

Optimizing Cache Performance

• Things to enhance:

• temporal locality

• spatial locality

• Things to minimize:

• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

15-745: Memory Hierarchy Optimizations 4

Carnegie Mellon

Two Things We Can Manipulate

• Time:

• When is an object accessed?

• Space:

• Where does an object exist in the address space?

How do we exploit these two levers?

15-745: Memory Hierarchy Optimizations 5

Carnegie Mellon

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?

• What information is needed?

• How do we know that this would be safe?

15-745: Memory Hierarchy Optimizations 6

Carnegie Mellon

Space: Changing Data Layout

• What do we know about an object’s location?

• scalars, structures, pointer-based data structures, arrays, code, etc.

• How can we tell what a better layout would be?

• how many can we create?

• To what extent can we safely alter the layout?

15-745: Memory Hierarchy Optimizations 7

Carnegie Mellon

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

15-745: Memory Hierarchy Optimizations 8

Carnegie Mellon

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?

• If so, what can be done?

int x;

double y;

foo(int a){

int i;

…

x = a*i;

…

}

15-745: Memory Hierarchy Optimizations 9

Carnegie Mellon

Structures and Pointers

• What can we do here?

• within a node

• across nodes

• What limits the compiler’s ability to optimize here?

struct {

int count;

double velocity;

double inertia;

struct node *neighbors[N];

} node;

Example: Can rearrange field order to improve cache performance

15-745: Memory Hierarchy Optimizations 10

Carnegie Mellon

Arrays / Matrices

• usually accessed within loops nests

• makes it easy to understand “time”

• what we know about array element addresses:

• start of array?

• relative position within array

double A[N][N], B[N][N];

…

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

15-745: Memory Hierarchy Optimizations 11

Carnegie Mellon

II. Iteration Space and Loop Transformations

• each position represents an iteration (not an array element)

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

15-745: Memory Hierarchy Optimizations 12

Carnegie Mellon

Visitation Order in Iteration Space

• Note: iteration space data space

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

15-745: Memory Hierarchy Optimizations 13

Carnegie Mellon

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

A B

Assume row major order, N large, 2 elements per cache line

Hit

Miss

i

j

i

j

Row major layout: A[0][0] A[0][1]…A[0][N-1] A[1][0] A[1][1]…A[1][N-1] A[2][0]…

15-745: Memory Hierarchy Optimizations 14

Carnegie Mellon

When Do Cache Misses Occur?

double A[2N-1][N];

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

Hit

Miss

i

j

Row major layout of A:
A[0][0] A[0][1]…A[0][N-1] A[1][0]…A[1][N-1]…A[2N-2][0]…A[2N-2][N-1]

Assume row major order, 2 elements per cache line

If N large then all misses. What if N is small? see above

15-745: Memory Hierarchy Optimizations 15

Carnegie Mellon

i

j

B[j+1][0]

i

j

B[j][0]

Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial TemporalTemporal

(assume row-major, 2 elements per cache line, N small)

(Self) (Group)
except for

(Self)

15-745: Memory Hierarchy Optimizations 16

Carnegie Mellon

Optimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:

• when do cache misses occur?

• use “locality analysis”

• can we change the order of the iterations (or possibly data layout) to
produce better behavior?

• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct results?

• use “dependence analysis”

15-745: Memory Hierarchy Optimizations 17

Carnegie Mellon

Examples of Loop Transformations

• Loop Interchange

• Cache Blocking

• Skewing: iterate through iteration space in the loops at an angle

• Loop Reversal: execute iterations in a loop in reverse order

• …

(we will briefly discuss the first two;
see ALSU 11.7.8 for others)

15-745: Memory Hierarchy Optimizations 18

Carnegie Mellon

Loop Interchange

for i = 0 to N-1

for j = 0 to N-1

A[j][i] = i*j;

i

j

Hit

Miss

j

i

for j = 0 to N-1

for i = 0 to N-1

A[j][i] = i*j;

Assume row major order, N large, 4 elements per cache line

15-745: Memory Hierarchy Optimizations 19

Carnegie Mellon

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L

for i = 0 to N-1

for j = JJ to min(N-1,JJ+L-1)

f(A[i],A[j]);

i

j

i

j

A[i] A[j]

i

j

i

j

A[i] A[j]

L elements
per cache line

15-745: Memory Hierarchy Optimizations 20

Carnegie Mellon

Impact on Visitation Order in Iteration Space

i

j

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L

for i = 0 to N-1

for j = JJ to min(N-1,JJ+L-1)

f(A[i],A[j]);

i

j

15-745: Memory Hierarchy Optimizations 21

Carnegie Mellon

Cache Blocking in Two Dimensions

• brings square sub-blocks of matrix “b” into the cache

• completely uses them up before moving on

• reduces the number of misses from
𝑁3

𝐿
or 𝑁3 to only

2𝑁3

𝐿 𝐶
(C=cache size, L=line size)

for i = 0 to N-1

for j = 0 to N-1

for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B

for KK = 0 to N-1 by B

for i = 0 to N-1

for j = JJ to min(N-1,JJ+B-1)

for k = KK to min(N-1,KK+B-1)

c[i,k] += a[i,j]*b[j,k];

15-745: Memory Hierarchy Optimizations 22

Carnegie Mellon

III. Intro to Locality Analysis

• Definitions:

• Reuse:

• accessing a location that has been accessed in the past

• Locality:

• accessing a location that is now found in the cache

• Key Insights

• Locality only occurs when there is reuse!

• BUT, reuse does not necessarily result in locality.

• why not?

15-745: Memory Hierarchy Optimizations 23

Carnegie Mellon

Steps in Locality Analysis

1. Find data reuse (“reuse analysis”)

• if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

• set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

• reuse localized iteration space locality

15-745: Memory Hierarchy Optimizations 24

Carnegie Mellon

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Carnegie Mellon

More Complicated Example

for i = ...

for j = 0 to m

A[2i+2][m-j][i+3j+1] = ...;

A[2i+2][m-j][i+3j+1] = A +
i
j

2
0
1

0
-1
3

2
m
1

Note: Representation is for Affine Array Indexes, i.e.
the index for each dimension of the array is an affine expression of
surrounding loop variables and symbolic constants

An expression of one or more variables 𝑥1, 𝑥2, … , 𝑥𝑛is affine if it can be expressed as
𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 for constants 𝑐0, 𝑐1, … , 𝑐𝑛

2515-745: Memory Hierarchy Optimizations

Carnegie Mellon

Temporal Reuse

• Temporal reuse occurs between iterations and whenever:

• For B[j+1][0] reuse between iterations (i1,j1) and (i2,j2) whenever:

➢ i.e., whenever j1 = j2, and regardless of the difference between i1 and i2

Carnegie Mellon

Steps in Locality Analysis

1. Find data reuse (“reuse analysis”)

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse localized iteration space locality

15-745: Memory Hierarchy Optimizations 28

Carnegie Mellon

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2

for j = 0 to 7

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

Localized: both i and j loops

i

j

B[j+1][0]

for i = 0 to 2

for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

Localized: j loop only

reuse implies locality reuse but no locality

15-745: Memory Hierarchy Optimizations 29

Carnegie Mellon

Steps in Locality Analysis

1. Find data reuse (“reuse analysis”)

• if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

• set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

• reuse localized iteration space locality

Big picture, but more to come in a future lecture...

Carnegie Mellon

Today’s Class: Memory Hierarchy Optimizations

3015-745: Memory Hierarchy Optimizations

Monday’s Class

• Array Dependence Analysis; Parallelization
– ALSU 11.6, 11.7.8

I. Caches: A Quick Review
II. Iteration Space & Loop Transformations
III. Intro to Locality Analysis

Friday’s Class

• Abhilasha leads discussion of Assignments 1 & 2 (Phil out of town)

• Discussion Lead sign up sheet goes live at 1:30 pm

