Lecture 16:

Array Dependence Analysis & Parallelization

- I. Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

[ALSU 11.6, 11.7.8]

Carnegie Mellon

I. Data Dependence

Let S_i precede S_i in execution.

- S_1 : a = 1; S_2 : b = a + 2; S_3 : a = c - d; ... S_4 : a = b/c;
- Flow (true) dependence: S_i computes a data value that S_i uses.

$$S_i \delta^t S_j$$

E.g.,
$$S_1 \delta^t S_2$$
 and $S_2 \delta^t S_4$

Anti dependence: S_i uses a data value that S_i overwrites.

$$S_i \delta^a S_i$$

E.g.,
$$S_2 \delta^a S_3$$

Output dependence: S_i computes a data value that S_i overwrites.

$$S_i \delta^o S_i$$

E.g.,
$$S_1 \delta^o S_3$$
 and $S_3 \delta^o S_4$

Input dependence: S_i uses a data value that S_i also uses.

$$S_i \delta^i S_j$$

E.g.,
$$S_3 \delta^i S_4$$

(Unlike the other 3, it is typically safe to execute S_i and S_j in parallel)

Data Dependence Graph

 Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.

$$S_1$$
: a = 1;
 S_2 : b = a + 2;
 S_3 : a = c - d;
...
 S_4 : a = b/c;

Array Data Dependence: Example 1

```
for i = 2 to 4 {
S<sub>1</sub>: a[i] = b[i] + c[i];
S<sub>2</sub>: d[i] = a[i]
}
```


- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ uses.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

$$S_1 \delta_{=}^t S_2$$
 or $S_1 \delta_0^t S_2$

Array Data Dependence: Example 2

- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 uses.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

$$S_1 \delta_{<}^t S_2$$
 or $S_1 \delta_1^t S_2$

Example 3

- There is an instance of S_2 that precedes an instance of S_1 in execution and S_2 uses data that S_1 overwrites.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1. The direction is positive (<).

$$S_2 \delta_{<}^a S_1$$
 or $S_2 \delta_{1}^a S_1$

• Are you sure you know why it is $S_2 \delta_{<}^a S_1$ even though S_1 appears before S_2 in the code?

Example 4: 2D Iteration Space

- An instance of S precedes another instance of S and S produces data that S uses.
- S is both source and sink.
- The dependence is loopcarried.
- The dependence distance is (1,-1).

$$\mathbf{S} \quad \mathbf{\delta}_{\leq,>}^{\mathbf{t}} \mathbf{S} \quad \text{ or } \mathbf{S} \quad \mathbf{\delta}_{1,-1}^{\mathbf{t}} \mathbf{S}$$

II. Dependence Testing: Formulation

Consider the following perfect nest of depth d:

"perfect" means step=1

Affine expressions:

$$c_0 + c_1 I_1 + c_2 I_2 + \dots + c_d I_d$$

for constants c_0, c_1, \dots, c_d

 $\vec{L} \leq \vec{U}$

 $\vec{U} = (U_1, U_2, \cdots, U_d)$

Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \le \vec{k} \le \vec{j} \le \vec{U}$ and:

$$\begin{array}{ll} & f_1(\vec{k}) = g_1(\vec{j}) \\ \text{and} & f_2(\vec{k}) = g_2(\vec{j}) \\ & \vdots \\ \text{and} & f_m(\vec{k}) = g_m(\vec{j}) \end{array}$$

That is:

and
$$f_1(\vec{k}) - g_1(\vec{j}) = 0$$
and
$$f_2(\vec{k}) - g_2(\vec{j}) = 0$$

$$\vdots$$
and
$$f_m(\vec{k}) - g_m(\vec{j}) = 0$$

<u>Problem Formulation - Example</u>

do i = 2, 4

$$S_1$$
: $a[i] = b[i] + c[i]$
 S_2 : $d[i] = a[i-1]$
end do

- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 1$?
- Answer: yes; $i_1=2 \& i_2=3$ and $i_1=3 \& i_2=4$.
- Hence, there is dependence!
- The dependence distance vector is i_2 - i_1 = 1.
- The dependence direction vector is sign(1) = <.

<u>Problem Formulation - Example</u>

```
do i = 2, 4

S_1: a[i] = b[i] + c[i]

S_2: d[i] = a[i+1]

end do
```

- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 + 1$?
- Answer: yes; $i_1=3 \& i_2=2$ and $i_1=4 \& i_2=3$. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is i_2 - i_1 = -1.
- The dependence direction vector is sign(-1) = >.
- Is this possible? Yes: As an antidependence, not a true dependence

<u>Problem Formulation - Example</u>

```
do i = 1, 10

S_1: a[2*i] = b[i] + c[i]

S_2: d[i] = a[2*i+1]

end do
```

- Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that $2*i_1 = 2*i_2 + 1$?
- Answer: no; 2*i₁ is even & 2*i₂+1 is odd
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors kand j that satisfies these constraints is called a dependence tester.

```
\begin{aligned} \text{do } \mathbf{I}_1 &= \mathbf{L}_1, \mathbf{U}_1 \\ \text{do } \mathbf{I}_2 &= \mathbf{L}_2, \mathbf{U}_2 \\ &\ddots \\ \text{do } \mathbf{I}_d &= \mathbf{L}_d, \mathbf{U}_d \\ & a(f_1(\vec{\mathbf{I}}), f_2(\vec{\mathbf{I}}), \cdots, f_m(\vec{\mathbf{I}})) = \cdots \\ & \cdots &= a(g_1(\vec{\mathbf{I}}), g_2(\vec{\mathbf{I}}), \cdots, g_m(\vec{\mathbf{I}})) \\ & \text{enddo} \\ & \ddots \\ & \text{enddo} \end{aligned}
```

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j} \vec{k}$.
- The dependence direction vector is give by sign($\vec{j} \vec{k}$).
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

III. Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

 Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$A(\cdots,b^*i+c_1,\cdots)=\cdots$$

 $\cdots=A(\cdots,b^*i+c_2,\cdots)$

• The dependence problem: does there exist i_1 and i_2 , such that $L_i \le i_1 \le i_2 \le U_i$ and such that $b^*i_1 + c_1 = b^*i_2 + c_2$? i.e.,

$$i_2 - i_1 = \frac{c_1 - c_2}{b}$$
?

- There is integer solution if and only if $\frac{c_1-c_2}{b}$ is integer.
- The dependence distance is $d = \frac{c_1 c_2}{b}$ if $|d| \le U_i L_i$
- d > 0 \Rightarrow true dependence
 - d = 0 \Rightarrow loop independent dependence
 - d < 0 \Rightarrow anti dependence

Lamport's Test - Example

$$b*i_1 + c_1 = b*i_2 + c_2$$

S: a[i,j] = a[i-1,j+1] end do end do

•
$$i_1 = i_2 - 1$$
?

•
$$j_1 = j_2 + 1$$
?

$$b = 1$$
; $c_1 = 0$; $c_2 = -1$

$$b = 1$$
; $c_1 = 0$; $c_2 = 1$

$$\frac{c_1-c_2}{b}=1$$

$$\frac{c_1-c_2}{b}=-1$$

There is dependence.

There is dependence.

Distance (i) is 1.

Distance (j) is -1.

<u>Lamport's Test – Another Example</u>

end do

$$b*i_1 + c_1 = b*i_2 + c_2$$

S: a[i,2*j] = a[i-1,2*j+1]end do

• $i_1 = i_2 - 1$?

$$b = 1$$
; $c_1 = 0$; $c_2 = -1$

$$\frac{c_1-c_2}{b}=1$$

There is dependence.

Distance (i) is 1.

$$b = 2$$
; $c_1 = 0$; $c_2 = 1$

$$\frac{c_1-c_2}{b}=-\frac{1}{2}$$

There is no dependence.

There is no dependence!

GCD Test

Given the following equation:

$$\sum_{i=1}^{n} a_i x_i = c$$
 where a_i and c are integers

an integer solution exists if and only if:

$$gcd(a_1, a_2, ..., a_n)$$
 divides c

- Problems:
 - ignores loop bounds
 - gives no information on distance or direction of dependence
 - often gcd(.....) is 1 which always divides c, resulting in false dependences

GCD Test - Example

do i = 1, 10

$$S_1$$
: $a[2*i] = b[i] + c[i]$
 S_2 : $d[i] = a[2*i-1]$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

$$2*i_1 = 2*i_2 -1?$$

or
 $2*i_2 - 2*i_1 = 1?$

- There will be an integer solution if and only if gcd(2,-2) divides 1.
- This is not the case, and hence, there is no dependence!

GCD Test: Another Example

do i = 1, 10

$$S_1$$
: $a[i] = b[i] + c[i]$
 S_2 : $d[i] = a[i-100]$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1$, $i_2 \le 10$ and such that:

$$i_1 = i_2 - 100?$$

or
 $i_2 - i_1 = 100?$

- There will be an integer solution if and only if gcd(1,-1) divides 100.
- This is the case, and hence, there is dependence! Or is there?

No: check loop bounds. Shows a limitation of GCD.

Dependence Testing: Complications

• Unknown loop bounds:

do i = 1, N

$$S_1$$
: a[i] = a[i+10]
end do

What is the relationship between N and 10?

Triangular loops:

Must impose j < i as an additional constraint.

More Complications

User variables:

do i = 1, 10

$$S_1$$
: a[i] = a[i+k]
end do

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., loop bounds normalization).

```
do i = L, H

S<sub>1</sub>: a[i] = a[i-1]
end do

do i = 1, H-L

S<sub>1</sub>: a[i+L] = a[i+L-1]
end do
```

More Complications: Scalars

$$\Rightarrow$$

privatization

$$j = N-1$$

do $i = 1$, N
 S_1 : $a[i] = a[j]$
 S_2 : $j = j - 1$
end do

$$\Rightarrow$$

do i = 1, N

$$S_1$$
: a[i] = a[N-i]

end do

IV. Loop Parallelization

 A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

Loop Parallelization

 A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.
 Outermost loop

> with a non "=" direction do i = 2, n-1carries dependence! do j = 2, m-1a(i, j) $\delta_{=,=}^{t}$ loop-independent = a(i, j)b(i, j) = ... $\delta_{=,<}^t$ carried by loop j = b(i, j-1)c(i, j) = ... $\delta_{\leq,=}^{t}$ carried by loop i = c(i-1, j)end do end do

Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

Loop Parallelization - Example

- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel!
- Outer loop parallelism

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel!
- Inner loop parallelism (Vectorization, SIMD)

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel! Why?
- Inner loop parallelism

V. Loop Interchange

Recall: Used to improve spatial locality

Assume row major order, N large, 4 elements per cache line

Loop Interchange

Can also be used to improve the granularity of parallelism!

$$\delta^{t}_{<,=}$$

$$\delta_{=,<}^{t}$$

Inner loop parallelism

Outer loop parallelism

Focus only on true dependences (i.e., lexicographically positive dependences)

do i = 1,n do j = 1,n ... a[i,j] ... end do end do

do i = 1,n do j = 1,n ... a[i,j] ... end do end do

do j = 1,n do i = 1,n ... a[i,j] ... end do end do

When is loop interchange legal?

when the "interchanged" dependences remain lexiographically positive!

Today's Class: Array Dependence Analysis & Parallelization

- Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

Wednesday's Class

Guest Lecture:
 Chris Fallin on Data-Structure Aware Distinctness Analysis