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Let Si precede Sj in execution.

• Flow (true) dependence: Si computes a data value that Sj uses.

𝐒𝐢 𝛅
𝐭 𝐒𝐣 E.g., 𝐒𝟏 𝛅

𝐭 𝐒𝟐 and 𝐒𝟐 𝛅
𝐭 𝐒𝟒

• Anti dependence: Si uses a data value that Sj overwrites.

𝐒𝐢 𝛅
𝒂 𝐒𝐣 E.g., 𝐒𝟐 𝛅

𝒂 𝐒𝟑

• Output dependence: Si computes a data value that Sj overwrites.

𝐒𝐢 𝛅
𝒐 𝐒𝐣 E.g., 𝐒𝟏 𝛅

𝒐 𝐒𝟑 and 𝐒𝟑 𝛅
𝒐 𝐒𝟒

• Input dependence: Si uses a data value that Sj also uses.

𝐒𝐢 𝛅
𝒊 𝐒𝐣 E.g., 𝐒𝟑 𝛅

𝒊 𝐒𝟒

(Unlike the other 3, it is typically safe to execute Si and Sj in parallel)

I. Data Dependence 𝑆1: a = 1;

𝑆2: b = a + 2;

𝑆3: a = c - d;

...

𝑆4: a = b/c;
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Data Dependence Graph

• Data dependence in a program may be represented using a dependence 
graph G=(V,E), where the nodes V represent statements in the program and 
the directed edges E represent dependence relations.
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𝑆1: a = 1;

𝑆2: b = a + 2;

𝑆3: a = c - d;

...

𝑆4: a = b/c;
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Array Data Dependence: Example 1

for i = 2 to 4 {
S1: a[i] = b[i] + c[i] ;
S2:    d[i] = a[i]

}

i=2 i=3 i=4

a[2] a[2] a[3] a[3] a[4] a[4]
d
t

d
t

d
t

⚫ There is an instance of S1 that precedes an instance of S2 in execution and S1

produces data that S2 uses.

⚫ S1 is the source of the dependence; S2 is the sink of the dependence.

⚫ The dependence flows between instances of statements in the same iteration 
(loop-independent dependence).

⚫ The number of iterations between source and sink (dependence distance) is 0. 
The dependence direction is =.

𝐒𝟏 𝛅=
𝐭 𝐒𝟐 or 𝐒𝟏 𝛅𝟎

𝐭 𝐒𝟐
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Array Data Dependence: Example 2

do i = 2, 4
S1: a[i] = b[i] + c[i]
S2:    d[i] = a[i-1]

end do

i=2 i=3 i=4

a[2] a[1] a[3] a[2] a[4] a[3]

d
t

d
t

⚫ There is an instance of S1 that precedes an instance of S2 in execution and S1

produces data that S2 uses.

⚫ S1 is the source of the dependence; S2 is the sink of the dependence.

⚫ The dependence flows between instances of statements in different iterations 
(loop-carried dependence).

⚫ The dependence distance is 1. The direction is positive (<).

𝐒𝟏 𝛅<
𝐭 𝐒𝟐 or 𝐒𝟏 𝛅𝟏

𝐭 𝐒𝟐
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Example 3

do i = 2, 4
S1: a[i] = b[i] + c[i]
S2:    d[i] = a[i+1]

end do

i=2 i=3 i=4

a[2] a[3] a[3] a[4] a[4] a[5]

d
a

d
a

⚫ There is an instance of S2 that precedes an instance of S1 in execution and S2

uses data that S1 overwrites.

⚫ S2 is the source of the dependence; S1 is the sink of the dependence.

⚫ The dependence is loop-carried.

⚫ The dependence distance is 1. The direction is positive (<).

𝐒𝟐 𝛅<
𝒂 𝐒𝟏 or 𝐒𝟐 𝛅𝟏

𝒂 𝐒𝟏

⚫ Are you sure you know why it is                   even though S1 appears before S2 in 
the code?

1
a

2
SS

<d
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Example 4: 2D Iteration Space

do i = 2, 4
do j = 2, 4

S: A[i,j] = A[i-1,j+1]
end do

end do

S[2,2] S[2,3] S[2,4]

S[3,2]

S[4,2]

S[3,3]

S[4,3]

S[3,4]

S[4,4]

A[1,3] A[1,4] A[1,5]

A[2,3] A[2,4] A[2,5]

A[3,3] A[3,4] A[3,5]

A[2,2] A[2,3] A[2,4]

A[3,2] A[3,3] A[3,4]

A[4,2] A[4,3] A[4,4]

d
t

d
t

d
t

d
t

⚫ An instance of S precedes 
another instance of S and S 
produces data that S uses.

⚫ S is both source and sink.

⚫ The dependence is loop-
carried.

⚫ The dependence distance is 
(1,-1).

𝐒 𝛅<,>
𝐭 𝐒 or 𝐒 𝛅𝟏,−𝟏

𝐭 𝐒
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II. Dependence Testing: Formulation

• Consider the following perfect nest of depth d:

enddo
enddo

enddo
))I(g,),I(g),I(a(g

))I(f,),I(f),I(a(f
U ,L  I do

U ,L  I do
U ,L  I do

m21

m21

ddd

222

111













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

=

=

=

=

=

)I,,I,(II d21 

=

)L,,L,L(L d


21=

)U,,U,U(U d21 

=

),,)I(f,a( k 


subscript
position

array reference

subscript
expression

UL




“perfect” means step=1

Affine expressions:
𝑐0 + 𝑐1𝐼1 + 𝑐2𝐼2 +⋯+ 𝑐𝑑𝐼𝑑
for constants 𝑐0, 𝑐1, … , 𝑐𝑑
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Problem Formulation

• Dependence will exist if there exists two iteration vectors
and    such that                         and:

)j(g)k(f

)j(g)k(f

)j(g)k(f

mm

22

11





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=

=

=

UjkL


k


j


0

0

0

22

11

=−

=−

=−

)j(g)k(f

)j(g)k(f

)j(g)k(f

mm







⚫ That is:

and

and

and

and

and

and
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Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, such that 
2  i1  i2  4 and such that  i1 = i2 - 1?

• Answer: yes;  i1=2 & i2=3 and   i1=3 & i2 =4.

• Hence, there is dependence! 

• The dependence distance vector is i2-i1 = 1.

• The dependence direction vector is sign(1) = <.

do i = 2, 4
S1: a[i] = b[i] + c[i]
S2:    d[i] = a[i-1]

end do

15-745: Parallelization 10



Carnegie Mellon

Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, such that 
2  i1  i2  4 and such that  i1 = i2 + 1?

• Answer: yes;  i1=3 & i2=2  and  i1=4 & i2=3. (But, but!).

• Hence, there is dependence! 

• The dependence distance vector is i2-i1 = -1.

• The dependence direction vector is sign(-1) = >.

• Is this possible?

do i = 2, 4
S1: a[i] = b[i] + c[i]
S2:    d[i] = a[i+1]

end do

Yes: As an antidependence, not a true dependence
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Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, such that 
1  i1  i2  10 and such that   2*i1 = 2*i2 +1?

• Answer: no;   2*i1 is even  &  2*i2+1 is odd

• Hence, there is no dependence! 

do i = 1, 10
S1: a[2*i] = b[i] + c[i]
S2:    d[i] = a[2*i+1]

end do
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Problem Formulation

• Dependence testing is equivalent to an integer linear 
programming (ILP) problem of 2d variables & m+d constraints!

• An algorithm that determines if there exists two iteration 
vectors     and     that satisfies these constraints is called a 
dependence tester.

k
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j


enddo
enddo

enddo
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Problem Formulation

• Dependence testing is equivalent to an integer linear 
programming (ILP) problem of 2d variables & m+d constraints!

• An algorithm that determines if there exists two iteration vectors          
and     that satisfies these constraints is called a dependence tester.

• The dependence distance vector is given by            . 

• The dependence direction vector is give by sign(         ).

• Dependence testing is NP-complete!

• A dependence test that reports dependence only when there is 
dependence is said to be exact. Otherwise it is in-exact.

• A dependence test must be conservative; if the existence of 
dependence cannot be ascertained, dependence must be assumed.

k


j


k


j


-

k


j


-
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III. Dependence Testers

• Lamport’s Test.

• GCD Test.

• Banerjee’s Inequalities.

• Generalized GCD Test.

• Power Test.

• I-Test.

• Omega Test.

• Delta Test.

• Stanford Test.

• etc…
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Lamport’s Test

• Lamport’s Test is used when there is a single index variable in the subscript 
expressions, and when the coefficients of the index variable in both expressions 
are the same.

• The dependence problem: does there exist i1 and i2, such that Li  i1  i2  Ui and 
such that   b*i1 + c1 = b*i2 + c2?      i.e.,  

• There is integer solution if and only if              is integer.

• The dependence distance is d =             if |d|  Ui - Li

• d > 0   true dependence
d = 0  loop independent dependence
d < 0  anti dependence

 =+ ),ci*b,A( 1

),ci*b,A(  2+=

?
b

cc
ii

21
12

−
=−

b
cc 21−

b
cc 21−
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Lamport’s Test - Example

• i1 = i2 - 1?

b = 1; c1 = 0; c2 = -1

There is dependence.

Distance (i) is 1.  

do i = 1, n
do j = 1, n

S: a[i,j] = a[i-1,j+1]
end do

end do

121 =
−

b
cc

• j1 = j2 + 1?

b = 1; c1 = 0; c2 = 1

There is dependence.

Distance (j) is -1.  

121 −=
−

b
cc

b*i1 + c1 = b*i2 + c2

𝐒 𝛅<,>
𝐭 𝐒 or 𝐒 𝛅𝟏,−𝟏

𝐭 𝐒
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Lamport’s Test – Another Example

• i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

There is dependence.

Distance (i) is 1.  

do i = 1, n
do j = 1, n

S: a[i,2*j] = a[i-1,2*j+1]
end do

end do

121 =
−

b
cc

• 2*j1 = 2*j2 + 1?

b = 2; c1 = 0; c2 = 1

There is no dependence.

2

121 −=
−

b
cc

?
There is no dependence!

b*i1 + c1 = b*i2 + c2
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GCD Test

• Given the following equation:

σ𝑖=1
𝑛 𝑎𝑖𝑥𝑖 = 𝑐 where 𝑎𝑖 and 𝑐 are integers

an integer solution exists if and only if:

gcd 𝑎1, 𝑎2, … , 𝑎𝑛 divides 𝑐

• Problems:

– ignores loop bounds

– gives no information on distance or direction of dependence

– often gcd(……) is 1 which always divides c, resulting in false dependences
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GCD Test - Example

• Does there exist two iteration vectors i1 and i2, such that 
1  i1  i2  10 and such that:

2*i1 = 2*i2 -1?
or

2*i2 - 2*i1 = 1?

• There will be an integer solution if and only if gcd(2,-2) divides 1.

• This is not the case, and hence, there is no dependence!

do i = 1, 10
S1: a[2*i] = b[i] + c[i]
S2:    d[i] = a[2*i-1]

end do
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GCD Test: Another Example

• Does there exist two iteration vectors i1 and i2, such that 
1  i1, i2  10 and such that:

i1 = i2 - 100?
or

i2 - i1 = 100?

• There will be an integer solution if and only if gcd(1,-1) divides 100.

• This is the case, and hence, there is dependence! Or is there?

do i = 1, 10
S1: a[i] = b[i] + c[i]
S2:    d[i] = a[i-100]

end do

No: check loop bounds.  Shows a limitation of GCD.
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Dependence Testing: Complications

• Unknown loop bounds:

What is the relationship between N and 10?

• Triangular loops:

Must impose j < i as an additional constraint.

do i = 1, N
S1: a[i] = a[i+10]

end do

do i = 1, N
do j = 1, i-1

S: a[i,j] = a[j,i]
end do

end do
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More Complications

• User variables:

Same problem as unknown loop bounds, but occur due to some loop 
transformations (e.g., loop bounds normalization).

do i = 1, 10
S1: a[i] = a[i+k]

end do

do i = L, H
S1: a[i] = a[i-1]

end do

do i = 1, H-L
S1: a[i+L] = a[i+L-1]

end do


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More Complications: Scalars

do i = 1, N
S1: x = a[i]
S2: b[i] = x

end do

do i = 1, N
S1: x[i] = a[i]
S2: b[i] = x[i]

end do

j = N-1
do i = 1, N

S1: a[i] = a[j]
S2: j = j - 1

end do

do i = 1, N
S1: a[i] = a[N-i]

end do





privatization
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IV. Loop Parallelization

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
...        = a(i, j)

b(i, j) = …
… = b(i, j-1)

c(i, j) = …
… = c(i-1, j)

end do
end do

• A dependence is said to be carried by a loop if the loop is the outermost loop 
whose removal eliminates the dependence. If a dependence is not carried by 
the loop, it is loop-independent.
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Loop Parallelization

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
...        = a(i, j)

b(i, j) = …
… = b(i, j-1)

c(i, j) = …
… = c(i-1, j)

end do
end do

• A dependence is said to be carried by a loop if the loop is the outermost loop 
whose removal eliminates the dependence. If a dependence is not carried by 
the loop, it is loop-independent.

Outermost loop
with a non “=“ direction

carries dependence!

𝛅=,=
𝐭

𝛅=,<
𝐭

𝛅<,=
𝐭

loop-independent

carried by loop j

carried by loop i
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Loop Parallelization

The iterations of a loop may be executed 
in parallel with one another if and only if 
no dependences are carried by the loop!
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Loop Parallelization - Example

• Iterations of loop j must be executed sequentially, but the iterations 
of loop i may be executed in parallel!

• Outer loop parallelism

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i, j-1)

end do
end do

fork

join

i=2

i=3 i=n-2

i=n-1

𝛅=,<
𝐭
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Loop Parallelization - Example

• Iterations of loop i must be executed sequentially, but the iterations 
of loop j may be executed in parallel!

• Inner loop parallelism (Vectorization, SIMD)

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i-1, j)

end do
end do

fork

join

j=2

j=3 j=m-2

j=m-1

i=i+1

𝛅<,=
𝐭
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Loop Parallelization - Example

• Iterations of loop i must be executed sequentially, but the iterations 
of loop j may be executed in parallel!  Why?

• Inner loop parallelism

do i = 2, n-1
do j = 2, m-1

b(i, j) = …
… = b(i-1, j-1)

end do
end do

fork

join

j=2

j=3 j=m-2

j=m-1

i=i+1

𝛅<,<
𝐭
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V. Loop Interchange

for i = 0 to N-1

for j = 0 to N-1

A[j][i] = i*j;

i

j

Hit

Miss

j

i

for j = 0 to N-1

for i = 0 to N-1

A[j][i] = i*j;

Assume row major order, N large, 4 elements per cache line

Recall: Used to improve spatial locality
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Loop Interchange

Can also be used to improve the granularity of parallelism!

do i = 1, n
do j = 1, n

a[i,j] = b[i,j]
c[i,j] = a[i-1,j]

end do
end do

Inner loop parallelism Outer loop parallelism

do j = 1, n
do i = 1, n

a[i,j] = b[i,j]
c[i,j] = a[i-1,j]

end do
end do

𝛅<,=
𝐭

𝛅=,<
𝐭
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When Is Loop Interchange Legal?

do i = 1,n
do j = 1,n

… a[i,j] …
end do

end do

j

i

t
,δ ><

t
,δ =<

t
,δ <>

t
,δ =>

t
,δ <<

t
,δ ==

t
,δ <=

t
,δ >=

t
,δ >>
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When Is Loop Interchange Legal?

j

i

t
,δ ><

t
,δ =<

t
,δ <<

t
,δ ==

t
,δ <=

Focus only on
true dependences

(i.e., lexicographically
positive dependences)

do i = 1,n
do j = 1,n

… a[i,j] …
end do

end do

do j = 1,n
do i = 1,n

… a[i,j] …
end do

end do
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When Is Loop Interchange Legal?

j

i

t
,δ ><

t
,δ =<

t
,δ <<

t
,δ ==

t
,δ <=

do i = 1,n
do j = 1,n

… a[i,j] …
end do

end do

do j = 1,n
do i = 1,n

… a[i,j] …
end do

end do
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When Is Loop Interchange Legal?

when the “interchanged” dependences remain lexiographically positive!

j

i

t
,δ ><

t
,δ =<

t
,δ <<

t
,δ ==

t
,δ <=

do i = 1,n
do j = 1,n

… a[i,j] …
end do

end do

do j = 1,n
do i = 1,n

… a[i,j] …
end do

end do

When is loop interchange legal?
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Today’s Class: Array Dependence Analysis & Parallelization

3715-745: Parallelization

Wednesday’s Class

• Guest Lecture: 
Chris Fallin on Data-Structure Aware Distinctness Analysis

I. Data Dependence
II. Dependence Testing: Formulation
III. Dependence Testers
IV. Loop Parallelization
V. Loop Interchange


