Lecture 16:

Array Dependence Analysis & Parallelization

- I. Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

[ALSU 11.6, 11.7.8]

Carnegie Mellon

I. Data Dependence

Let S_{i} precede S_{j} in execution.

- Flow (true) dependence: S_i computes a data value that S_j uses. $S_i \delta^t S_i$ ^t S_j E.g., S_1 δ^t S_2 and S_2 δ^t S_4
- Anti dependence: S_i uses a data value that S_i overwrites. $S_i \delta^a S_i$ $a S_j$ E.g., $S_2 \delta^a S_3$
- Output dependence: S_i computes a data value that S_j overwrites. $S_i \delta^o S_i$ $^{\text{o}}$ S_j E.g., S₁ δ ^o S₃ and S₃ δ ^o S₄
- Input dependence: S_i uses a data value that S_j also uses.
	- $S_i \delta^i S_i$ $^{i}S_{j}$ E.g., $S_{3} \delta^{i}S_{4}$

(Unlike the other 3, it is typically safe to execute S_i and S_j in parallel)

Data Dependence Graph

• Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.

$$
S_1
$$
: $a = 1$;
\n S_2 : $b = a + 2$;
\n S_3 : $a = c - d$;
\n...
\n S_4 : $a = b/c$;

Array Data Dependence: Example 1

- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 uses.
- \bullet S₁ is the source of the dependence; S₂ is the sink of the dependence.
- ⚫ The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- ⚫ The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

$$
S_1 \delta^t = S_2 \text{ or } S_1 \delta^t_0 S_2
$$

Array Data Dependence: Example 2

- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 uses.
- \bullet S₁ is the source of the dependence; S₂ is the sink of the dependence.
- ⚫ The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive \leq).

$$
\mathbf{S}_1 \; \delta^t_< \; \mathbf{S}_2 \quad \text{or} \quad \mathbf{S}_1 \; \delta^t_1 \; \mathbf{S}_2
$$

Example 3

- There is an instance of S_2 that precedes an instance of S_1 in execution and S_2 uses data that S_1 overwrites.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- ⚫ The dependence is loop-carried.
- The dependence distance is 1. The direction is positive $\langle \langle \rangle$.

 $S_2 \, \delta^a_< \, S_1$ or $S_2 \, \delta^a_1 \, S_1$

• Are you sure you know why it is $S_2 \delta^a_s S_1$ even though S_1 appears before S_2 in the code? *a* $S_2 \delta^a_s S$

Example 4: 2D Iteration Space

- do $i = 2, 4$ do $j = 2, 4$ S: $A[i,j] = A[i-1,j+1]$ end do end do
- ⚫ An instance of S precedes another instance of S and S produces data that S uses.
- ⚫ S is both source and sink.
- ⚫ The dependence is loopcarried.
- ⚫ The dependence distance is $(1,-1).$
	- $S \quad \delta_{<,>}^t S \quad \text{or} \quad S \quad \delta_{1,-1}^t S$

Carnegie Mellon

II. Dependence Testing: Formulation

• Consider the following perfect nest of depth d: "perfect" means step=1

Problem Formulation

• Dependence will exist if there exists two iteration vectors $\mathsf{k}% _{1}\subset\mathsf{A}$ and $\vec{\mathsf{j}}$ such that $\vec{\mathsf{L}}\leq\vec{\mathsf{k}}\leq\vec{\mathsf{j}}\leq\vec{\mathsf{U}}$ and:

$$
f_1(\vec{k}) = g_1(\vec{j})
$$

and

$$
f_2(\vec{k}) = g_2(\vec{j})
$$

and

$$
\vdots
$$

$$
f_m(\vec{k}) = g_m(\vec{j})
$$

That is:

$$
f_1(\vec{k}) - g_1(\vec{j}) = 0
$$

and

$$
f_2(\vec{k}) - g_2(\vec{j}) = 0
$$

and

$$
\vdots
$$

and

$$
f_m(\vec{k}) - g_m(\vec{j}) = 0
$$

Problem Formulation - Example

$$
do i = 2, 4
$$

\n
$$
S_1: a[i] = b[i] + c[i]
$$

\n
$$
S_2: d[i] = a[i-1]
$$

\n
$$
end do
$$

- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 - 1$?
- Answer: yes; $i_1=2$ & $i_2=3$ and $i_1=3$ & $i_2=4$.
- Hence, there is dependence!
- The dependence distance vector is $i_2-i_1 = 1$.
- The dependence direction vector is $sign(1) =$.

Problem Formulation - Example

```
do i = 2, 4S_1: a[i] = b[i] + c[i]S_2: d[i] = a[i+1]
   end do
```
- Does there exist two iteration vectors i_1 and i_2 , such that $2 \le i_1 \le i_2 \le 4$ and such that $i_1 = i_2 + 1$?
- Answer: yes; $i_1=3$ & $i_2=2$ and $i_1=4$ & $i_2=3$. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_2-i_1 = -1$.
- The dependence direction vector is $sign(-1) = \gt.$
- Is this possible? Yes: As an antidependence, not a true dependence

Problem Formulation - Example

```
do i = 1, 10S_1: a[2^*i] = b[i] + c[i]S_2: d[i] = a[2*i+1]
   end do
```
- Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that $2^*i_1 = 2^*i_2 +1$?
- Answer: no; 2^*i_1 is even & 2^*i_2+1 is odd
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors \overrightarrow{K} and \overrightarrow{j} that satisfies these constraints is called a dependence tester.

$$
d\circ I_1 = L_1, U_1
$$
\n
$$
d\circ I_2 = L_2, U_2
$$
\n
$$
\vdots
$$
\n
$$
d\circ I_d = L_d, U_d
$$
\n
$$
a(f_1(\vec{T}), f_2(\vec{T}), \cdots, f_m(\vec{T})) = \cdots
$$
\n
$$
\cdots = a(g_1(\vec{T}), g_2(\vec{T}), \cdots, g_m(\vec{T}))
$$
\n
$$
enddo
$$
\n
$$
\vdots
$$
\n
$$
enddo
$$
\n
$$
\vdots
$$
\n
$$
enddo
$$
\n
$$
enddo
$$
\n
$$
enddo
$$

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraints!
- An algorithm that determines if there exists two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by \vec{j} \vec{k} .
- The dependence direction vector is give by sign(\vec{j} \vec{k}). \rightarrow j -
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

III. Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc…

Lamport's Test

• Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$
A(\cdots, b^{\star}i+c_{1}, \cdots) = \cdots
$$

$$
\cdots = A(\cdots, b^{\star}i+c_{2}, \cdots)
$$

• The dependence problem: does there exist i_1 and i_2 , such that $L_i \le i_1 \le i_2 \le U_i$ and such that $b^*i_1 + c_1 = b^*i_2 + c_2$? i.e., The dependence problem: doe
such that $b^*i_1 + c_1 = b^*i_2 + c_2$:
 $i_2 - i_1 =$
There is integer solution if and
The dependence distance is d
 $d > 0 \Rightarrow$ true dependence
 $d = 0 \Rightarrow$ loop independence
 $d < 0 \Rightarrow$ anti dependence

$$
i_2-i_1=\frac{c_1-c_2}{b}?
$$

- There is integer solution if and only if $\frac{1}{b}$ is integer. $c_1 - c_2$
- The dependence distance is $d = \frac{1}{b}$ if $|d| \leq U_i L_i$ b $\mathsf{c}_1\mathsf{-c}_2$
- $d > 0$ \Rightarrow true dependence
	- $d = 0 \implies$ loop independent dependence
	-

Lamport's Test - Example

Lamport's Test – Another Example

GCD Test

• Given the following equation:

 $\sum_{i=1}^n a_i x_i = c$ where a_i and c are integers

an integer solution exists if and only if:

 $gcd(a_1, a_2, ..., a_n)$ divides c

- Problems:
	- ignores loop bounds
	- gives no information on distance or direction of dependence
	- often gcd(……) is 1 which always divides c, resulting in false dependences

GCD Test - Example

do i = 1, 10
\nS₁:
$$
a[2^*i] = b[i] + c[i]
$$

\nS₂: $d[i] = a[2^*i-1]$
\nend do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

$$
2 * i_1 = 2 * i_2 - 1?
$$

or

$$
2 * i_2 - 2 * i_1 = 1?
$$

- There will be an integer solution if and only if $gcd(2,-2)$ divides 1.
- This is not the case, and hence, there is no dependence!

GCD Test: Another Example

```
do i = 1, 10S_1: a[i] = b[i] + c[i]S_2: d[i] = a[i-100]
   end do
```
• Does there exist two iteration vectors i_1 and i_2 , such that $1 \leq i_1$, $i_2 \leq 10$ and such that:

```
i_1 = i_2 - 100?
or
    i_2 - i_1 = 100?
```
- There will be an integer solution if and only if $gcd(1,-1)$ divides 100.
- This is the case, and hence, there is dependence! Or is there?

```
No: check loop bounds. Shows a limitation of GCD.
```
Dependence Testing: Complications

• Unknown loop bounds:

```
do i = 1, N
S_1: a[i] = a[i+10]end do
```
What is the relationship between N and 10?

• Triangular loops:

do
$$
i = 1
$$
, N

\ndo $j = 1$, $i-1$

\nS: $a[i,j] = a[j,i]$

\nend do

\nend do

Must impose $j < i$ as an additional constraint.

More Complications

• User variables:

```
do i = 1, 10S_1: a[i] = a[i+k]end do
```
Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., loop bounds normalization).

$$
do i = L, H
$$

\n
$$
S_{1}: a[i] = a[i-1]
$$

\n
$$
end do
$$

\n
$$
do i = 1, H-L
$$

\n
$$
S_{1}: a[i+L] = a[i+L-1]
$$

\n
$$
end do
$$

Carnegie Mellon

More Complications: Scalars

privatization

IV. Loop Parallelization

• A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do
$$
i = 2, n-1
$$

\ndo $j = 2, m-1$

\na(i, j) = ...

\n...

\ni. $i = a(i, j)$

\nb(i, j) = ...

\n...

\ni. $i = b(i, j-1)$

\nc(i, j) = ...

\n...

\ni. $i = c(i-1, j)$

\nend do

\nend do

Loop Parallelization

• A dependence is said to be carried by a loop if the loop is the outermost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent. Outermost loop

> do $i = 2, n-1$ do $j = 2, m-1$ $a(i, j) = ...$ $= a(i, j)$ $b(i, j) = ...$... $= b(i, j-1)$ $c(i, j) = ...$... $= c(i-1, j)$ end do end do with a non "=" direction carries dependence! $\delta_{=,=}^{\mathrm{t}}$ $\delta_{=,<}^{\rm t}$ $\delta_{\le,-}^{\rm t}$ loop-independent carried by loop j carried by loop i

> > **Carnegie Mellon**

Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

Loop Parallelization - Example

- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel!
- Outer loop parallelism

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel!
- Inner loop parallelism (Vectorization, SIMD)

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel! Why?
- Inner loop parallelism

V. Loop Interchange

Recall: Used to improve spatial locality

Assume row major order, N large, 4 elements per cache line

Carnegie Mellon

Loop Interchange

 \Rightarrow

Can also be used to improve the granularity of parallelism!

$$
do i = 1, n
$$

\n
$$
do j = 1, n
$$

\n
$$
a[i,j] = b[i,j]
$$

\n
$$
c[i,j] = a[i-1,j]
$$

\nend do
\nend do
\n
$$
end do
$$

do j = 1, n do i = 1, n $a[i,j] = b[i,j]$ $c[i,j] = a[i-1,j]$ end do end do

 $\delta_{\equiv,<}^{\rm t}$

Inner loop parallelism and a set of the Outer loop parallelism

When Is Loop Interchange Legal?

 $do j = 1, n$ do $i = 1, n$ … a[i,j] … end do end do

When Is Loop Interchange Legal? j i $\delta^{<>}_{\langle>}$ $\delta_{\zeta^-}^\dagger$ t $\delta^{\rm L}_{\rm K}$ t $\delta_{-}^{\scriptscriptstyle\mathsf{T}}$, = $\overline{\delta^\pm_{\scriptscriptstyle{-}<}}$ Focus only on true dependences (i.e., lexicographically positive dependences) do $i = 1, n$ do $j = 1, n$ … a[i,j] … end do end do do $j = 1, n$ do $i = 1, n$ … a[i,j] … end do end do

When Is Loop Interchange Legal?

do i = 1,n do $j = 1, n$ … a[i,j] … end do end do

When Is Loop Interchange Legal?

When is loop interchange legal?

when the "interchanged" dependences remain lexiographically positive!

Today's Class: Array Dependence Analysis & Parallelization

- I. Data Dependence
- II. Dependence Testing: Formulation
- III. Dependence Testers
- IV. Loop Parallelization
- V. Loop Interchange

Wednesday's Class

• Guest Lecture: Chris Fallin on Data-Structure Aware Distinctness Analysis