
Carnegie Mellon

Lecture 17:

Distinctness Analysis

Phillip B. Gibbons 15-745: Distinctness Analysis 1

Guest Lecture by Chris Fallin

Finding and Exploiting Parallelism
with Data-Structure-Aware
Static and Dynamic Analysis

Chris Fallin

15-745 Lecture

(derived from thesis defense)

February 27, 2019

Outline

• Introduction

• First-Class Data Structures

• DAEDALUS: Distinctness Analysis

• ICARUS: Incorporating Dynamic Checks

3

We have the following legacy serial code that we wish to optimize:

Problem: High-Level Program Optimizations are Difficult

HashMap<Item, Result> results = new HashMap<>();

List<Item> items = …;

for (Item it : items) {

Result r = it.analyze();

results.put(it, r);

}

Hot loop

4

Problem: High-Level Program Optimizations are Difficult

CPU 0

Iteration 0

Iteration 1

Iteration 2

Legacy system: single CPU

5

Problem: High-Level Program Optimizations are Difficult

CPU 0

Iteration 0

Iteration 1

Iteration 2

CPU 1 CPU 2

Legacy code is sequential: unused cores

Modern system: many CPUs

6

Problem: High-Level Program Optimizations are Difficult

CPU 0

Iteration 0

Iteration 1

Iteration 2

CPU 1

Iteration 10

Iteration 11

Iteration 12

CPU 2

Iteration 20

Iteration 21

Iteration 22

Parallelize the Loop?

7

Problem: High-Level Program Optimizations are Difficult

HashMap<Item, Result> results = new HashMap<>();

List<Item> items = …;

for (Item it : items) {

Result r = it.analyze();

results.put(it, r);

}

Hot loop

We have the following legacy serial code that we wish to optimize:

8

Problem: High-Level Program Optimizations are Difficult

HashMap<Item, Result> results = new HashMap<>();

List<Item> items = …;

items.parallelStream().forEach(it -> { // parallel-for

Result r = it.analyze();

results.put(it, r);

});

We have the following legacy serial code that we wish to optimize:

9

Problem: High-Level Program Optimizations are Difficult

HashMap<Item, Result> results = new HashMap<>();

List<Item> items = …;

items.parallelStream().forEach(it -> {

Result r = it.analyze();

synchronized (results) { // locking on shared Map

results.put(it, r);

}

});

We have the following legacy serial code that we wish to optimize:

10

Problem: High-Level Program Optimizations are Difficult

CPU 0

Iteration 2

CPU 1

Iteration 11

CPU 2

11

Problem: High-Level Program Optimizations are Difficult

CPU 0 CPU 1 CPU 2

analyze()

Map.put()
analyze()

Map.put()

Is this sound?
• analyze() calls overlap and

occur out-of-order

Invariant 1. Each analyze() instance
reads/writes only its own Item.

i1

i2

Invariant 2. Each Item occurs in list
exactly once.

analyze()

i1
12

Problem: High-Level Program Optimizations are Difficult

CPU 0 CPU 1 CPU 2

analyze()

Map.put()
analyze()

Map.put()

Is this sound?
• Map.put() calls occur

out-of-order

Fact (API semantics). Map insertions are
commutative for two keys k1 ≠ k2.

Invariant 2 (again). Each Item occurs
in list exactly once.

13

Problem: High-Level Program Optimizations are Difficult

• Human refactors by understanding high-level invariants & semantics:
• (Data Structure API) Key-value map insertions are commutative when

accessing two different keys.

• (Program invariant) Item.analyze() accesses only this.

• (Program invariant) No element appears in list more than once.

• Could the compiler do this too?

14

Could a Compiler Analysis Derive This?
• (Data Structure API) Key-value map insertions are commutative when

accessing two different keys.

• Unlikely to derive commutativity from first principles without help

• Similarly, “no duplicate elements in list” is very difficult

void put(K key, V value) {

int h = key.hash();

Node n = new Node(key, value);

n.next = slots[h];

slots[h] = n;

}

key.x * 8931 + key.y;

map.put(k, v);Human sees:

Compiler sees:

15

Solution: Domain-Specific Languages?
• DSLs separate algorithm and implementation!

SELECT a, b FROM table WHERE a > 1

PROJECT t0.a, t0.b

FILTER t0.a > 1

SCAN table AS t0

Query planner

Example: SQL

16

Solution: Domain-Specific Languages?
• DSLs separate algorithm and implementation!

UniqueList items = …;

HashMap results = items.buildMap(it -> analyze(it));

pure Result analyze(Item it) {

// can only access it and newly-allocated objects

// …

}

17

Solution: Domain-Specific Languages?
• DSLs separate algorithm and implementation!

• But, not always applicable:

• Legacy code: already exists (rewrite costs effort + risk)

• Mixed applications: multiple kernels (DSL integration?)
• DSLs with limitations: a program may not map cleanly onto DSL

18

HashMap<Item, Result> results = new HashMap<>();

List<Item> items = …;

for (Item it : items) {

Result r = it.analyze();

results.put(it, r);

}

Our Approach: General Language + Analysis

• We want the full expressive power of a general-purpose language

• We want to derive the programmer-level understanding with analyses

19

Our Approach: General Language + Analysis

• We want the full expressive power of a general-purpose language

• We want to derive the programmer-level understanding with analyses

For-Each

analyze()

Side-effects: none
List<Item>

Elements: unique

Map<Item, Result>

Values: unique per-key

For-Each
new Item()

Parallelizable

20

Outline

• Introduction

• First-Class Data Structures

• DAEDALUS: Distinctness Analysis

• ICARUS: Incorporating Dynamic Checks

21

Outline

• Introduction

• First-Class Data Structures

• DAEDALUS: Distinctness Analysis

• ICARUS: Incorporating Dynamic Checks

22

Points-to Analysis of a Hash Map
Map<Item, Result> m = new HashMap<>();

for (Item it : items) {

Result r = it.analyze();

m.put(it, r);

}

23

m
HashMap1

Item1

Result1

it

r

[Item1]

?

Points-to Analysis of a Hash Map
Map<Item, Result> m = new HashMap<>();

for (Item it : items) {

Result r = it.analyze();

m.put(it, r);

}

void put(K key, V value) {

int h = key.hash();

Node n = new Node(key, value);

n.next = slots[h];

slots[h] = n;

}

24

m
HashMap1

Item1

Result1

it

r

buckets

Array1

array elem

Node1

key
value

Points-to Analysis of a Hash Map

25

m
HashMap1

Item1

Result1

it

r

buckets

Array1

array elem

Node1

key
value

m
HashMap1

Item1

Result1

it

r

[Item1]

vs.

Points-to Analysis of a Hash Map: Problems

• Problem 1: All value slots in key-value map artificially merged into
one points-to set

Key k1 = new Key(…);
Key k2 = new Key(…);
map.put(k1, v1);
map.put(k2, v2);
Value v = map.get(k); // pts-to set {v1, v2}

• Problem 2: Analysis will not reveal commutativity
• Reordering operations produces a different heap (but Map.get() doesn’t care)

• Problem 3: Analysis of implementation is not scalable

26

Solution: First-Class Data Structures

• Key Idea: provide compiler intrinsics for key-value maps and lists so
that analyses can reason directly about these data structures

27

void put(K key, V value) {

int h = key.hash();

Node n = new Node(key, value);

n.next = slots[h];

slots[h] = n;

}

Item1

Result1

HashMap1

buckets

Array1

array elem

Node1

key
value

Solution: First-Class Data Structures

• Key Idea: provide compiler intrinsics for key-value maps and lists so
that analyses can reason directly about these data structures

• Part 1: replace implementation in library with an equivalent model

28

model void put(K key, V value) {

mapput this.m, key, value;

} Item1

Result1

HashMap1

buckets

Array1

array elem

Node1

key
value

Solution: First-Class Data Structures

• Key Idea: provide compiler intrinsics for key-value maps and lists so
that analyses can reason directly about these data structures

• Part 1: replace implementation in library with an equivalent model

• Part 2: define intrinsics and extend points-to analysis

29

Result1

Map1

[Item1]
model void put(K key, V value) {

mapput this.m, key, value;

}

Semantic Models: Explicit Library Semantics

• Key Idea: replace portions of program as analyzed with simpler logic
• Modify callgraph during analysis: resolve to “model override” methods

30

for (Item it : items) {

Result r = it.analyze();

m.put(it, r);

}

void MyClass.f()
int h = key.hash();

Node n = new Node(key, value);

n.next = slots[h];

slots[h] = n;

void HashMap.put(…)

Callgraph

Semantic Models: Explicit Library Semantics

• Key Idea: replace portions of program as analyzed with simpler logic
• Modify callgraph during analysis: resolve to “model override” methods

31

for (Item it : items) {

Result r = it.analyze();

m.put(it, r);

}

void MyClass.f()

Callgraph

mapput this.m, key, value;

model void Map.put(…)

Semantic Models: Conservative Behavior

• Models are conservative
• May have additional side-effects: overapproximate accessed-memory footprint

• May return additional or “unknown” values

32

void HashMap.equals(Object o) {

for (Entry e : this) {

if (!e.value().equals(other.get(e.key())) {

return false;

}

}

return true;

}

Semantic Models: Conservative Behavior

• Models are conservative
• May have additional side-effects: overapproximate accessed-memory footprint

• May return additional or “unknown” values

33

model void HashMap.equals(Object other) {

// conservatively call `.equals()` on all items

for (Key k : mapkeyiter this.m) {

e.equals(e);

}

// likewise for `other`

return unknown; // could be `true` or `false`

}

First-Class Key-Value Maps

• Key Idea: provide key-value maps as new language-level object type
• On the same level as arrays, or heap objects with fields

34

map := mapnew

value := mapget map, key

mapput map, key, value

value := mapremove map, key

flag := mapprobe map, key

len := maplength map

it := mapkeyiter map

flag := iterhasnext it

value := iternext it

key := equivclass userkey

• Key Idea: provide key-value maps as new language-level object type
• On the same level as arrays, or heap objects with fields

Points-to Analysis of Maps

35

p = new T();

q = new U();

p.f1 = q;

q.f2 = p;

x = p.f1.f2;

p

q

T1

U1

f1

f2
x

m M1
[T1]

[U1]

m = mapnew;

mapput m, p, q;

mapput m, q, p;

• Key Idea: provide key-value maps as new language-level object type
• On the same level as arrays, or heap objects with fields

Points-to Analysis of Maps

36

Ordinary heap abstraction

T1

f1

q

pts(q) = { T1 }

pts(T1.f) = { … }

m M1
[T1]

[U1]

pts(m) = { M1 }

pts(M1.T1) = { … }

pts(M1.U1) = { … }

Map heap abstraction

• Key Idea: provide key-value maps as new language-level object type
• On the same level as arrays, or heap objects with fields

// Store
FieldPointsTo(obj, field, pointee) :-
Store(ptr, field, value),
VarPointsTo(ptr, obj),
VarPointsTo(value, pointee).

// Load
VarPointsTo(dest, pointee) :-
Load(dest, ptr, field),
VarPointsTo(ptr, obj),
FieldPointsTo(obj, field, pointee).

Points-to Analysis of Maps: Inference Rules

37

• Key Idea: provide key-value maps as new language-level object type
• On the same level as arrays, or heap objects with fields

// Map Store
MapPointsTo(mapobj, keyobj, pointee) :-

MapStore(map, key, value),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
VarPointsTo(value, pointee).

// Map Load
VarPointsTo(dest, pointee) :-

MapLoad(dest, map, key),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
MapPointsTo(mapobj, keyobj, pointee).

Points-to Analysis of Maps: Inference Rules

38

• Key Idea: provide lists (sequences) as new language-level object type

• In analysis: lower list operations to map operations
• A list is just a map indexed by integers!

Points-to Analysis of Maps: Lists

39

p = new T();

q = new U();

l = listnew;

i = 0;

listput l, i, p;

i = i + 1;

listput l, i, q;

• Key Idea: provide lists (sequences) as new language-level object type

• In analysis: lower list operations to map operations
• A list is just a map indexed by integers!

Points-to Analysis of Maps: Lists

40

p = new T();

q = new U();

l = mapnew;

i = 0;

mapput l, i, p;

i = i + 1;

mapput l, i, q;

p
T1

l

M1

[Ints]

i
Ints

q
U1

Is this useful?
(Next section)

• Problem: Not all list operations are explicitly indexed

• Idea: provide a primitive for “some unique index”

Points-to Analysis of Maps: Lists

41

p = new T();

q = new U();

l = listnew;

listappend l, p;

listappend l, q;

p = new T();

q = new U();

l = mapnew;

idx1 = virtualindex l;

mapput l, idx1, p;

idx2 = virtualindex l;

mapput l, idx2, q;

Outline

• Introduction

• First-Class Data Structures

• DAEDALUS: Distinctness Analysis

• ICARUS: Incorporating Dynamic Checks

42

for (i = …) {

array[2*i] = i;

array[2*i+1] = i;

}

for (Item it : item) {

it.field = new T();

}

Can We Parallelize This Program?

43

• Standard parallelizability analyses understand
arrays with affine indexing functions

for (i = …) {

array[i] = 2*i;

}

Loop Parallelizability

•Problem: no closed-form expression for which n

•Use alias analysis?

Alias Analysis for Loop Parallelization?

44

for (Item it : items) {

it.field = new T();

}

it Item1

field

Alias Analysis for Loop Parallelization?

45

for (Item it : items) {

it.field = new T();

}

Item1

field

it @ iteration 0

it @ iteration 1

→ Every iteration writes Item1.field

Alias Analysis for Loop Parallelization?

• What if we know that it points to a different object each iteration?

46

for (Item it : items) {

it.field = new T();

}

it Item1

field

Alias Analysis for Loop Parallelization?

• What if we know that it points to a different object each iteration?

47

for (Item it : items) {

it.field = new T();

}

it Item1

Distinctness Analysis: Variable Distinctness

• Key Idea: annotate points-to edges to indicate additional non-aliasing
• A variable is distinct with respect to a loop if its value in iteration i does not

alias its value in iteration j, within a single loop instance

for (…) {

it = …;

}

48

it Item1

it @ iter 0 → x1

it @ iter 1 → x2

…
it @ iter 0 → x2

it @ iter 1 → x1

…

instance

instance

L:

Distinctness on the Heap?

• Many programs preserve distinctness through the heap

49

for (…) {

parent = new Parent();

parent.field = new Child();

list.add(parent);

}

for (Parent p : list) {

f(p.field);

}

Distinct

Distinct?

Distinctness Analysis: Heap Distinctness

• Key Idea: annotate points-to edges to indicate additional non-aliasing
• A field on a heap abstraction is distinct if, for each object instance in this

abstraction, the field has a different pointer value.

50

Item1Obj1

ff

f f

FieldDistinct

• Similarly for map distinctness (handles lists too)

Inferring Heap-Field Distinctness

• A field on a heap abstraction is distinct if:
• For every loop around the one store statement to the field,

• The stored value is distinct w.r.t. this loop, OR

51

x1

x2

x3

Store instances:
x1.f = y1

x2.f = y2

x2.f = y3

x3.f = y4

y1

y2

y3

y4

time

Inferring Heap-Field Distinctness

• A field on a heap abstraction is distinct if:
• For every loop around the one store statement to the field,

• The stored value is distinct w.r.t. this loop, OR

• The stored-to pointer is constant w.r.t. this loop.

52

x1

x2

x3

Store instances:
x1.f = y1

x1.f = y2

x1.f = y1

x1.f = y4

y1

y2

y3

y4

time

Using Heap-Field Distinctness

• A load result is distinct w.r.t. a loop if:
• The loaded-from pointer is distinct w.r.t. this loop, AND

• The heap field on all loaded-from abstractions are distinct, AND

• No two loaded-from abstractions have intersecting points-to sets.

53

x1

x2

x3

y1

y2

y3

y4

p @ iter 1

p @ iter 2

q := p.f

Distinct
Distinct

Using Heap-Field Distinctness

• A load result is distinct w.r.t. a loop if:
• The loaded-from pointer is distinct w.r.t. this loop, AND

• The heap field on all loaded-from abstractions are distinct, AND

• No two loaded-from abstractions have intersecting points-to sets.

54

y1

y2

y3

y4

q @ iter 1

q @ iter 2

q := p.f

Distinct

Distinctness Analysis: Map Distinctness

• Key-Value Maps have two possible types of distinctness
for a given (Map, Key, Value) 3-tuple of abstractions:
• Global map distinctness: no two keys in any two maps point to same value

55

m1

k1

k2

m2

k1

k2

v1

v2

v3

v4

Distinctness Analysis: Map Distinctness

• Key-Value Maps have two possible types of distinctness
for a given (Map, Key, Value) 3-tuple of abstractions:
• Global map distinctness: no two keys in any two maps point to same value

• Within-map distinctness: no two keys in a single map point to same value

56

m1

k1

k2

m2

k1

k2

v1

v2

v3

v4

Distinctness Analysis in Detail: Assignment

• We actually compute NotDistinct as an analysis result
• Meet-function at phi-nodes is intersection – thus, natural implementation

NotDistinct(var, loop) :-
Assign(instruction, var, from),
NotDistinct(from, loop),
LoopInContext(instruction, loop).

NotConstant(var, loop) :-
Assign(instruction, var, from),
NotConstant(from, loop),
LoopInContext(instruction, loop).

57

Distinctness Analysis in Detail: Load + Store

• We can derive the inverted (not-distinct) forms from the more
intuitive positive-polarity versions with help of DeMorgan’s Law:
• A field is not distinct if (i) more than one store writes to it, or (ii) for any store,

for any loop in context, stored value is not-distinct and pointer is not-constant

FieldNotDistinct(obj, field) :-
Store(instruction1, ptr1, value),
VarPointsTo(ptr1, obj),
Store(instruction2, ptr2, value),
VarPointsTo(ptr2, obj),
instruction1 != instruction2.

FieldNotDistinct(obj, field) :-
Store(instruction, ptr, value),
LoopInContext(instruction, loop),
VarNotDistinct(value, loop),
VarNotConstant(ptr, loop).

58

Distinctness Analysis in Detail: Load + Store

• We can derive the inverted (not-distinct) forms from the more
intuitive positive-polarity versions with help of DeMorgan’s Law:
• A load result is not distinct if (i) it reads from abstractions with overlapping

field points-to sets, or (ii) the field is not-distinct on any pointed-to
abstraction, or (iii) the pointer is not-distinct.

VarNotDistinct(dest, loop) :-

Load(inst, ptr, field, dest),

VarPointsTo(ptr, obj),

FieldNotDistinct(obj, field),

LoopInContext(inst, loop).

VarNotDistinct(dest, loop) :-

Load(inst, ptr, field, dest),

VarNotDistinct(ptr, loop). 59

Distinctness Analysis in Detail: Map Store

MapNotDistinct(mapobj, keyobj), MapNotDistinctWithinMap(mapobj, keyobj) :-
MapStore(inst1, map1, key1, dest1),
VarPointsTo(map1, mapobj),
VarPointsTo(key1, keyobj),
MapStore(inst2, map2, key2, dest2),
VarPointsTo(map2, mapobj),
VarPointsTo(key2, keyobj),
inst1 != inst2.

MapNotDistinct(mapobj, keyobj) :-
MapStore(inst, map, key, dest),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
VarNotDistinct(dest, loop),
(VarNotConstant(map, loop); VarNotConstant(key, loop)).

MapNotDistinctWithinMap(mapobj, keyobj) :-
MapStore(inst, map, key, dest),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
VarNotDistinct(dest, loop),
VarNotConstant(key, loop).

60

Distinctness Analysis in Detail: Map Load

VarNotDistinct(dest, loop) :-
MapLoad(inst, map, key, dest),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
MapNotDistinct(mapobj, keyobj),
MapNotDistinctWithinMap(mapobj, keyobj),
LoopInContext(inst, loop).

VarNotDistinct(dest, loop) :-
MapLoad(inst, map, key, dest),
VarPointsTo(map, mapobj),
VarPointsTo(key, keyobj),
// may still be distinct within map
MapNotDistinct(mapobj, keyobj),
(VarNotConstant(map, loop); VarNotDistinct(key, loop)).

VarNotDistinct(dest, loop) :-
MapLoad(inst, map, key, dest),
VarNotDistinct(map, loop),
VarNotDistinct(key, loop).

61

Example: Distinctness in Action
for (int i = 0; i < 100; i++)

list.add(i);

for (Integer i : list)

map.put(i, new Parent());

for (Integer i : map.keyset())

map.get(i).childPtr = new Child();

for (Integer i : list)

map.get(i).childPtr.field = i;

62

Integer induction variable distinct

List elements are distinct

Parent instance is distinct

Map values are globally distinct

i is distinct (map key iter value)

map.get(i) is distinct

Child instance is distinct

childPtr is field-distinct

i is distinct (from list)

map.get(i) is distinct

map.get(i).childPtr is distinct

Store to field is parallelizable

Side-Effect Analysis for Parallelization

• When can we parallelize a loop L?

63

itfor (Item it : items) {

it.field = new T();

}

Item1

Distinct w.r.t. L

L:

• For each written-to location (abstraction.field or map[key]):
• Every written-to pointer to this location is distinct w.r.t. L

• All of the written-to pointers (if > 1) alias each other (same distinct object)

• See thesis for: must-alias analysis; map/list side-effects + commutativity; locking

Evaluation: Methodology

• Analyses
• Our system: DAEDALUS (Data-structure-aware Distinctness Analysis)

• Baseline: standard array-based parallelization analysis

• Java Benchmark suites
• dacapo: Well-known benchmark suite of full programs

• olden: Small data-structure-intensive programs

• pbbs: Problem-Based Benchmark Suite

• cpu: “CPU-intensive” programs – compilers, simulators, …

• Simulation-based performance results

64

Evaluation: Parallelization Coverage (High Opp.)

65

21.84

60.15

0

20

40

60

80

100

d
ac

ap
o

.b
at

ik

d
ac

ap
o

.p
m

d

d
ac

ap
o

.x
al

an

cp
u

.d
jb

d
d

cp
u

.ja
cc

cp
u

.jl
at

ex
m

at
h

cp
u

.js
ch

em
e

cp
u

.s
ab

le
b

d
d

cp
u

.s
at

4
j

o
ld

en
.b

h

o
ld

en
.e

m
3

d

o
ld

en
.m

st

o
ld

en
.p

o
w

e
r

p
b

b
s.

in
ts

o
rt

p
b

b
s.

n
n

p
b

b
s.

rm
d

u
p

A
V

G

%
 o

f
D

yn
am

ic
 In

sn
s

Affine Daedalus

1.076

1.274

0.0

0.5

1.0

1.5

2.0

2.5

3.0
d

ac
ap

o
.b

at
ik

d
ac

ap
o

.p
m

d

d
ac

ap
o

.x
al

an

cp
u

.d
jb

d
d

cp
u

.ja
cc

cp
u

.jl
at

ex
m

at
h

cp
u

.js
ch

em
e

cp
u

.s
ab

le
b

d
d

cp
u

.s
at

4
j

o
ld

en
.b

h

o
ld

en
.e

m
3

d

o
ld

en
.m

st

o
ld

en
.p

o
w

er

p
b

b
s.

in
ts

o
rt

p
b

b
s.

n
n

p
b

b
s.

rm
d

u
p

G
EO

M
EA

N

Pe
rf

. V
s.

 1
 C

o
re

Parallelization Speedup, 4 Cores

Affine-4 Daedalus-4

Evaluation: Parallel Speed-ups

66

Outline

• Introduction

• First-Class Data Structures

• DAEDALUS: Distinctness Analysis

• ICARUS: Incorporating Dynamic Checks

67

Is Static Analysis Enough?

• Consider the following snippet:

List<Item> l = …;

for (Item it : input) {

if (!it.seen) {

l.add(it);

it.seen = true;

}

}

for (Item it : l) { f(it); }

• Are l’s elements distinct?
• Could we parallelize the second loop? 68

Deduplication logic

→ Parallelizable

Simple Dynamic Checks

69

• What if we check, then we parallelize only if safe, at runtime?

List<Item> l = …;

// …

if (distinct(l)) {

l.parallelStream().forEach(it -> f(it));

} else {

for (Item it : l) { f(it); }

}

Systematically Leveraging Dynamic Checks

• Goal: insert minimal set of checks while maximizing parallelized loops

• Key Idea: extend static-analysis rules in a systematic way
• Step 1. Compute possible distinctness

• Step 2. Evaluate parallelization; choose actually-needed dynamic possibilities

• Step 3. Propagate needed distinctness backward to choose check sites.

70

71

void add(Item it) {

if (!it.seen) {

list.add(it);

it.seen = true; }}

void process() {

for (Item it : list) {

it.result = compute(it); }}

int compute(Item it) {

Metadata m = metadata.get(it);

m.update();

return m.result(); }
Distinctness fact

Rule application

add(): it
R1

List
(element)

process(): it
R2

R3

compute(): it

compute(): m

metadata
(within-map) R4

Goal (to parallelize loop)

Systematically Leveraging Dynamic Checks

Possible check

Possible check

Possible check

Possible check

Systematically Leveraging Dynamic Checks

72

Distinctness fact

Rule application

add(): it
R1

List
(element)

process(): it
R2

R3

compute(): it

compute(): m

metadata
(within-map) R4

Distinct

Not Distinct

Systematically Leveraging Dynamic Checks

73

Distinctness fact

Rule application

add(): it
R1

List
(element)

process(): it
R2

R3

compute(): it

compute(): m

metadata
(within-map) R4

Possible check

Possible check

Possible check

Possible check

?

Distinct

Possibly Distinct

Not Distinct

?
?

?

?

! Needed

?

74

Distinctness fact

Rule application

add(): it
R1

List
(element)

process(): it
R2

R3

compute(): it

compute(): m

metadata
(within-map) R4

Possible check

Possible check

Possible check

Possible check

?

Distinct

Possibly Distinct

Not Distinct

?
?

?

?

! Needed

!

!

!

Insert dynamic
check here

Needed for
parallelization

Systematically Leveraging Dynamic Checks

?!!

Executing with Dynamic Checks

• If checks always succeed, we’re done!

• What if a check fails?

75

for (…) {

p = …;

p.f = …;

}

i = 0
p = 0x1000
p.f = 42

i = 1
p = 0x2000
p.f = 42

i = 2
p = 0x1000
p.f = 42

CPU 0 CPU 1 CPU 2

Executing with Dynamic Checks

• If checks always succeed, we’re done!

• What if a check fails?

• Key Idea: pause at the check & wait for prior iters→ no rollback!
76

for (…) {

p = …;

p.f = …;

}

i = 0
p = 0x1000
p.f = 42

i = 1
p = 0x2000
p.f = 42

i = 2
p = 0x1000
p.f = 42

CPU 0 CPU 1 CPU 2

Dynamic Heap-Distinctness Checks

• How do we dynamically check field distinctness?
• Prohibitive to check directly: iterate over all objects on heap…?

• Key Idea: maintain a non-distinct bit on pointer fields with checks

• Update on store if containing loop has had a failed check

• Check on load and serialize on failure (as for variable checks)

77

Node1Obj1

f

f
f

Pointer word Pointer (63 bits) ND

ND

Sequencing the Checks

• How do we know a check has succeeded?
• We must know all addresses generated by this check in prior iterations

78

for (…) {

for (…) {

p = …;

}

}

i = 0
p = 0x1000

p = 0x2000

P = 0x3000

i = 1
p = 0x2000

CPU 0 CPU 1 CPU 2

!

Sequencing the Checks

• How do we know a check has succeeded?
• We must know all addresses generated by this check in prior iterations

• Key Idea: Check waits for the “check completion point” of prior iteration
79

for (…) {

for (…) {

p = …;

}

}

i = 0
p = 0x1000

p = 0x2000

p = 0x3000
…
…

i = 1
…
…
p = 0x2000

CPU 0 CPU 1 CPU 2

Completion
point Completion

point

Evaluation: Methodology

• Analyses
• ICARUS (Integrated Compiler and Runtime with User-level Semantics)

• DAEDALUS

• Standard array-based baseline

• Simulation-based performance results
• New traces w.r.t. DAEDALUS evaluation (to incorporate values for checks)

80

Evaluation: Parallelization Coverage

81

24.34
14.02

3.83

4.79

0

20

40

60

80

100
d

ac
ap

o
.p

m
d

cp
u

.c
lo

u
d

si
m

cp
u

.d
jb

d
d

cp
u

.ja
cc

cp
u

.s
ab

le
b

d
d

o
ld

en
.b

h

o
ld

en
.e

m
3

d

o
ld

en
.m

st

o
ld

en
.p

o
w

e
r

p
b

b
s.

co
m

p
ar

is
o

n
so

rt

p
b

b
s.

in
ts

o
rt

p
b

b
s.

n
n

p
b

b
s.

ra
yc

as
t

A
V

G

%
 o

f
D

yn
am

ic
 In

sn
s

Affine Daedalus Icarus-Success Icarus-Serialize

Evaluation: Speed-up (Upper Bound)

82

1.23
1.73
1.94

0

2

4

6
d

ac
ap

o
.p

m
d

cp
u

.c
lo

u
d

si
m

cp
u

.d
jb

d
d

cp
u

.ja
cc

cp
u

.s
ab

le
b

d
d

o
ld

en
.b

h

o
ld

en
.e

m
3

d

o
ld

en
.m

st

o
ld

en
.p

o
w

e
r

p
b

b
s.

co
m

p
ar

is
o

n
so

rt

p
b

b
s.

in
ts

o
rt

p
b

b
s.

n
n

p
b

b
s.

ra
yc

as
t

G
EO

M
EA

N

Pa
ra

lle
l S

p
ee

d
u

p

16 Cores, 1-Cycle WQ, Perf Caches

Affine Daedalus Icarus

15.8 15.9

Evaluation: Discussion

• Significant opportunity with Daedalus, improved under Icarus

• Additional speedup will require:
• Heuristics to choose the most appropriate loops to parallelize

• Effective means of parallelizing small-iteration loops

• Our focus in this work was on analysis; backend engineering is very
important, but separate work (with many interesting problems)

83

Summary

• Data-structure-aware analysis framework
• First-class primitives for key-value maps and lists

• DAEDALUS: New loop-centric, simple alias analysis using distinctness
• Analyzes cross-loop-iteration and on-heap pointer aliasing

• ICARUS: Hybrid dynamic-static analysis approach to improve precision
• Systematic method of deriving hybrid analysis from static analysis rules

• Execution techniques to enable loop parallelization with dynamic checks

84

Future Directions

• Additional IR primitives / built-ins
• Can we build, e.g., a graph-aware analysis?
• Primitives for queries/updates (dataflow) and traversals (control flow)

• Generalize the hybrid dynamic-static scheme
• Where else can we make use of dynamic checks for better precision?
• Need to think about execution strategy

• Apply to systems languages: C/C++
• Can we apply the same ideas to a more complex heap model?
• Pointers to inner data structures & pointer arithmetic; value types; …

• More scalable analysis
• Can we build a distinctness-like analysis on top of a more scalable foundation?
• Avoid e.g. blowup in contexts (with function summaries) or heap abstractions (with careful

merging)

• Use parts of our infrastructure in your project!
• Datalog is a really productive way to build static analyses

85

Thanks! Questions?

86

