Lecture 18

Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

Review: Iterative Data Flow Analysis

- **Semi-lattice**
	- set of values **V**
	- meet operator \wedge
	- $-$ Top \overline{T}
	- finite descending chain?

Meet Operator: Union

Review: Iterative Data Flow Analysis

- **Semi-lattice**
	- set of values **V**
	- meet operator Λ
	- $-$ Top \overline{I}
	- finite descending chain?
- **Transfer functions**
	- function of a basic block **f: V** → **V**
	- closed under composition
	- meet-over-paths **MOP**
	- monotone
	- distributive?

For each node *n:* MOP(*n*) = $\wedge f_{p_i}$ (T), **for all paths** *p* **in data-flow graph reaching** *n.*

If data flow framework is monotone (i.e., $x \leq y$ implies $f(x) \leq f(y)$) **then if the algorithm converges, IN[b]** ≤ **MOP[b] *, so analysis is ? safe.**

Data flow framework (monotone) converges if its lattice has ? a finite descending chain.

If data flow framework is distributive $(i.e., f(x \wedge y) = f(x) \wedge f(y))$ **then if the algorithm converges, IN[b] = MOP[b] *, so ? precision is high.**

* for backward analysis OUT[b]

Review: Iterative Data Flow Analysis

• **Semi-lattice** – set of values **V** meet operator \wedge $-$ Top T – finite descending chain? • **Transfer functions** – function of a basic block **f: V** → **V** – closed under composition – meet-over-paths **MOP** – monotone – distributive? ❼ 6 **B0** $B2$ **B** $B1$ $\overline{4}$ ❷ ❸ **B3** $\mathbf{B5}$ **Q** $\mathbf{B4}$ **B6 A** B0,B1,…,B6 is rPostOrder

• **Algorithm**

- initialization step (entry/exit, other nodes)
- repeated passes until find fixedpoint solution
- visit order of each pass: **rPostOrder**

Region-Based Analysis: Motivation

- **Exploit the structure of block-structured programs in data flow**
- **Tie in several concepts studied:**
	- Use of structure in induction variables, loop invariant
		- motivated by nature of the problem
		- *This lecture: can we use structure for speed?*
	- Iterative algorithm for data flow
		- *This lecture: an alternative algorithm*
	- Reducibility
		- all retreating edges of DFS Tree are back edges (t->h, h dominates t)
		- reducible graphs converge quickly
		- *This lecture: algorithm exploits & requires reducibility*
- **Usefulness in practice**
	- Faster for "harder" analyses
	- Useful for analyses related to structure, e.g., global scheduling (Lecture 20)
- **Theoretically interesting: better understanding of data flow**

x dominates w (x dom w) iff x sdom w $OR x = w$ x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

I. Big Picture

A **region** in a flow graph is a set of nodes with a **header** that dominates all other nodes in a region

Basic Idea

• **In Iterative Analysis:**

- DEFINITION: Transfer function F_B : summarize effect from beginning to end of basic block B
- **In Region-Based Analysis:**
	- DEFINITION: Transfer function F_{RB} : summarize effect from beginning of region R to end of basic block B
	- **Recursively**

construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
	- $-$ out[B] = F_{PB} (v)
	- in $[B] = \bigwedge_{B'} out[B']$, where B' is a predecessor of B

II. Algorithm

- A. Operations on transfer functions
- B. How to build nested regions?
- C. How to construct transfer functions that correspond to the larger regions?

A. Operations on Transfer Functions

Example: **Reaching Definitions**

• Transfer function over a block:

 $F(x) = Gen \cup (x - Kill)$ Input parameters

- Resulting transfer functions (after operations) must be consistent with this form:
	- same equation
	- updated values for **Gen** and **Kill** set parameters

Operations on Transfer Functions: Composition

 $F_2 \circ F_1$

x

Operations on Transfer Functions: Meet

(Recall that for Reaching Definitions, $\wedge = \cup$.)

$$
F_1(x) \wedge F_2(x) = Gen_1 \cup (x - Kill_1) \cup Gen_2 \cup (x - Kill_2)
$$

= $\frac{Gen_1 \cup Gen_2}{(x - Kill_1 \cap Kill_2)}$
Gen set after \wedge

15-745: Region-Based Analysis 12

Operations on Transfer Functions: Closure

(x) New Feature!

(We don't have this in iterative data flow analysis.)

Carnegie Mellon

What is the value at the input of the block?

• *including* the possible effects of the back edge \rightarrow it may iterate 0, 1, 2, ..., \sim number of times

$$
F^{*}(x) = \Lambda_{\{n \ge 0\}} F^{n}(x)
$$

= x \wedge F(x) \wedge F(F(x)) \wedge ...
= x \cup (Gen \cup (x - Kill)) \cup (Gen \cup ((Gen \cup (x - Kill)) - Kill)) \cup ...
= Gen \cup (x - Ø)
Gen set
Kill set (after closure)

Recap of Operations on Transfer Functions

For **Reaching Definitions:**

• Transfer Function (**F(x)**):

 $F(x) = Gen \cup (x - Kill)$

• Composition $(F_2(F_1(x)))$:

 $Gen = Gen_2 \cup (Gen_1 - Kill_2)$ **Kill** = $Kill_1 \cup Kill_2$

• <u>Meet</u>: $(F_1(x) \wedge F_2(x))$:

Gen = $Gen_1 \cup Gen_2$ **Kill** = Kill₁ \cap Kill₂

• Closure: (**F*(x)**):

Gen = Gen **Kill** = \varnothing

B. Structure of Nested Regions

- A **region** in a flow graph is a set of nodes that
	- includes a **header**, which dominates all other nodes in a region
- **T1-T2 rule (Hecht & Ullman) for Flow Graphs:**
	- T1: Remove a loop

If n is a node with a loop, i.e. an edge $n > n$, delete that edge (all such edges for n)

• T2: Remove a vertex

If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

Reducible Flow Graph

T2: Remove a vertex w/unique predecessor T1: Remove n->n loops

- In reduced graph:
	- each vertex represents a subgraph of original graph (a **region**).
	- each edge represents an edge in original graph
- **Limit flow graph**: result of exhaustive application of T1 and T2
	- independent of order of application
	- reducible flow graph: limit flow graph has a single vertex

• **Transfer function**

FR,B: summarizes the effect from beginning of R to end of B

FR,in(H2): summarizes the effect from beginning of R to beginning of H2

- Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R1,B}$)
- $F_{R,in(H2)} = \Lambda_{p} F_{R,P}$, where p is a predecessor block of H₂
- $-$ For blocks B in region R_2 : $F_{R,B}$ = $F_{R2,B}$ \circ $F_{R,in(H2)}$

Transfer Functions for T1 Rule

R R: new region *(subsumes back edges from* $R_1 \rightarrow R_1$)

T1: Remove n->n loops

Observations:

- the header of **R¹** (i.e. **H**) is also the header of **R**
- we already know how to get from **H** to **B** for every block B in **R¹** : i.e. **FR1,B**
	- this will be the *last step* in getting from the new **R** to **B** (**composition**)
- what's new: we need to get from **R** to the input of **H**, *including back edges!*
	- this involves both **meet** (\wedge) and **closure** (*) operations

Transfer Functions for T1 Rule

R: new region *(subsumes back edges from* $R_1 \rightarrow R_1$)

T1: Remove n->n loops

- **Transfer Function FR,B**
	- $F_{R,in(H)} = (\Lambda_P F_{R1,P})^*$, where p is a predecessor block of H in R $- F_{R,B} = F_{R1,B} \circ F_{R,in(H)}$

- R: region name; R' : region w/subsumed header; R'' : region w/header that remains
- T_2 : $F_{R,B}$ = $F_{R'',B}$ for B \in R"; $F_{R,B}$ = $F_{R'B}$ \circ $F_{R,in(R')}$ for B \in R'; $F_{R,in(R')}$ = \wedge _P $F_{R,P}$, p \in pred(HR')
- T_1 : $F_{R,B} = F_{R,B} \circ F_{R,in(R')}$; $F_{R,in(R')} = (\Lambda_P F_{R,P})^*$, $p \in pred(HR')$

- R: region name; R' : region w/subsumed header; R'' : region w/header that remains
- T_2 : $F_{R,B}$ = $F_{R'',B}$ for B \in R"; $F_{R,B}$ = $F_{R'B}$ \circ $F_{R,in(R')}$ for B \in R'; $F_{R,in(R')}$ = \wedge _P $F_{R,P}$, p \in pred(HR')
- T_1 : $F_{R,B} = F_{R,B} \circ F_{R,in(R')}$; $F_{R,in(R')} = (\Lambda_P F_{R,P})^*$, $p \in pred(HR')$

III. Complexity of Algorithm

 $O(n)$ entries B $\left| \mathsf{F}_{\mathsf{R4,B}} \right|$ B_5 F_{B5} \circ $F_{R4,in(R4)}$ B_4 F_{B4} \circ $F_{R4,in(R3)}$ B_3 **F**_{B3} **○ F**_{R4,in(R2)} $B₂$ FB2 **◦** FR4,in(R1) B_1 $F_{R4,B}$
 $F_{B5} \circ F_{R4,in(R4)}$
 $F_{B4} \circ F_{R4,in(R3)}$
 $F_{B3} \circ F_{R4,in(R2)}$
 $F_{B2} \circ F_{R4,in(R1)}$
 $F_{B1} \circ F_{R4,in(R1)}$

Carnegie Mellon

15-745: Region-Based Analysis 22

 R_4

 R_3

 $R₂$

 R_1

 B_1

 $R \mid F_{R4,in(R)}$

I

 F_{B5} \circ $F_{R4,in(R4)}$

 F_{B4} \circ $F_{R4,in(R3)}$

FB3 **◦** FR4,in(R2)

 F_{B2} **○** $F_{R4,in(R1)}$

Optimization

- **Let m = number of edges, n = number of nodes**
- **Ideas for optimization**
	- $-$ If we compute $F_{R,B}$ for every region B is in, then it is very expensive
	- We are ultimately only interested in the entire region (E); we need to compute only $F_{E,B}$ for every B.
		- There are many common subexpressions between $F_{E,B1}$, $F_{E,B2}$, ...
		- Number of $F_{E,B}$ calculated = m
	- Also, we need to compute $F_{R,lin(R')}$, where R' represents the region whose header is subsumed.
		- Number of $F_{R,B}$ calculated, where R is not final = n
- Total number of $F_{R,B}$ calculated: (m + n)
	- Data structure keeps "header" relationship
		- Practical algorithm: O(m log n)
		- Complexity: $O(m\alpha(m,n))$, α is inverse Ackermann function

- If no T1, T2 is applicable before graph is reduced to single node, then **split node** (make k copies of node, one per predecessor) and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow Analysis

- **Applicability**
	- $-$ Definitions of F^* can make technique more powerful than iterative algorithms
	- Backward flow: reverse graph is not typically reducible.
		- Requires more effort to adapt to backward flow than iterative algorithm
	- More important for interprocedural optimization, optimizations related to loop nesting structure
- **Speed**
	- Irreducible graphs
		- Iterative algorithm can process irreducible parts uniformly
		- Serious "irreducibility" can be slow with region-based analysis
	- Reducible graphs?

Review: Speed of Convergence of Iterative Data Flow

- **If cycles do not add information***
	- information can flow in one pass down nodes of increasing order number:

• e.g.
$$
\sqrt{1 - 34 - 5} - 7 - 2 - 6
$$
 ...
first pass

- passes determined by number of back edges in the path
	- essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
- **What is the depth?**
	- corresponds to depth of intervals for "reducible" graphs

* E.g., Reaching Definitions: if a defn *d* in node n_1 reaches a node n_k along a path that contains a cycle (i.e., a repeated node), then the cycle can be removed to form a shorter path from n_1 to n_k such that *d* reaches n_k .

Comparison with Iterative Data Flow Analysis

- **Applicability**
	- $-$ Definitions of F^* can make technique more powerful than iterative algorithms
	- Backward flow: reverse graph is not typically reducible.
		- Requires more effort to adapt to backward flow than iterative algorithm
	- More important for interprocedural optimization, optimizations related to loop nesting structure
- **Speed**
	- Irreducible graphs
		- Iterative algorithm can process irreducible parts uniformly
		- Serious "irreducibility" can be slow with region-based analysis
	- Reducible graph & Cycles do not add information (common)
		- Iterative: $(depth + 2)$ passes, $O(m^*depth)$ steps depth is 2.75 average, independent of code length
		- Region-based analysis: Theoretically almost linear, typically O(m log n) steps
	- Reducible graph & Cycles add information*
		- Iterative takes longer to converge
		- Region-based analysis remains the same

Today's Class: Region-Based Analysis

- Basic Idea L
- Algorithm $II.$
- **Optimization and Complexity** $III.$
- Comparing region-based analysis with iterative algorithms IV.

Wednesday

• Day of discussions on Project Proposal ideas

Friday's Class

- Instruction Scheduling [ALSU 10.1-10.3]
- Discussion of Assignment #3