Lecture 18

Region-Based Analysis

|. Basicldea

Il. Algorithm

Ill.  Optimization and Complexity

IV. Comparing region-based analysis with iterative algorithms

[ALSU 9.7]

Phillip B. Gibbons 15745: Region-Based Analysis 1



Review: Iterative Data Flow Analysis

* Semi-lattice T ={d1,d2}
— setof values V / \
— meet operator A {d1} {d2}

— Top T \ /
{}

— finite descending chain?

Meet Operator:
Intersection

Meet Operator:
Union

15-745: Region-Based Analysis 2



Review: Iterative Data Flow Analysis

e Semi-lattice

set of values V

meet operator A

Top T

finite descending chain?

* Transfer functions

function of a basic block f: V—> V
closed under composition
meet-over-paths MOP
monotone

distributive?

For each node n: MIOP(n) = /\f (T),
for all paths p in data-flow graph
reaching n.

If data flow framework is monotone
(i.e., x <y implies f(x) < f(y))

then if the algorithm converges,

IN[b] < MOP[b] *, so analysis is ? safe.

Data flow framework (monotone)
converges if its lattice has ?

a finite descending chain.

If data flow framework is distributive

(i.e., f(x Ay) = f(x) A f(y))
then if the algorithm converges,
IN[b] = MOP[b] *, so ? precision is high.

* for backward analysis OUT[b]

15-745: Region-Based Analysis



Review: Iterative Data Flow Analysis

: BO
*  Semi-lattice BO,B1,...,B6 s

(7
rPostOrder /\
— set of values V

— meet operator A B2 (5 (6] Bl
— Top T
— finite descending chain? \/
* Transfer functions B3 (4]
— function of a basic block f: V — V /\
— closed under composition B5 0 r3) B4

— meet-over-paths MOP

— monotone \/
— distributive? o

B6

e Algorithm

— initialization step (entry/exit, other nodes)
— repeated passes until find fixedpoint solution
— visit order of each pass: rPostOrder

15-745: Region-Based Analysis 4



Region-Based Analysis: Motivation

* Exploit the structure of block-structured programs in data flow
* Tiein several concepts studied:
— Use of structure in induction variables, loop invariant

* motivated by nature of the problem
* This lecture: can we use structure for speed?

— lterative algorithm for data flow
» This lecture: an alternative algorithm
— Reducibility
* all retreating edges of DFS Tree are back edges (t->h, h dominates t)

* reducible graphs converge quickly
* This lecture: algorithm exploits & requires reducibility

e Usefulness in practice

— Faster for “harder” analyses

— Useful for analyses related to structure, e.g., global scheduling (Lecture 20)
* Theoretically interesting: better understanding of data flow

15-745: Region-Based Analysis 5



Review: Dominance

5 dominates {5,6,7,8}:
All paths to 6, 7, or 8

Control flow graph
must visit 5 first

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

x dominates w (x dom w) iff x sdom w OR x =w

Carnegie Mellon -

15-745: Region-Based Analysis 6



|. Big Picture A region in a flow graph is
a set of nodes with a

oML 7N\ B header that dominates all
\ 3/ @l Leu ’L /| other nodes in a region

FOZ0 OO 00 TO=0

"ORORI/RO
TGO

Carnegie Mellon -

15-745: Region-Based Analysis 7



Basic Idea

 |In Iterative Analysis:

e DEFINITION: Transfer function Fy:
summarize effect from beginning to end of basic block B

* In Region-Based Analysis: R
* DEFINITION: Transfer function Fp : \"l Fre
summarize effect from beginning of region R to end of basic block B B
A 4

* Recursively

construct a larger region R from smaller regions
construct Fg ; from transfer functions for smaller regions
until the program is one region

* Let P be the region for the entire program,
and v be initial value at entry node

— out[B] = Fyq (V)

— in [B] = A 5 out[B’], where B’ is a predecessor of B

15-745: Region-Based Analysis 8



-
II. Algorithm

A. Operations on transfer functions
B. How to build nested regions?

C. How to construct transfer functions that correspond to the larger regions?

15-745: Region-Based Analysis 9



A. Operations on Transfer Functions

Example: Reaching Definitions

€ X

* Transfer function over a block:

F(x) = Gen U (x — Kill)

Input parameters

* Resulting transfer functions (after operations) must be consistent with this form:
— Ssame equation
— updated values for Gen and Kill set parameters

15-745: Region-Based Analysis 10



Operations on Transfer Functions: Composition

FaoFy
X
¥
F5(F1(x)) = Gen, U (Fy(x) - Kill,) = Gen,
= Gen, U (Gen, U (x - Kill,)) - Kill,) R
- Gen, U (Gen, - Kill,) U {x = (Kill, U Kill,)) Y
Gen,
T T F2 Kill,
Gen set Kill set v J
after composition after composition F.oF
2 M1
F5(F4(x))

15-745: Region-Based Analysis 11



Operations on Transfer Functions: Meet

X
Gen, Gen
Sl F ; z
Kill, ! 2 il
v F1(x) A Fy(x)

(Recall that for Reaching Definitions, A =U.)

Fi(x) A F,(x) =Geny U (x-Kill;) U Gen, U (x - Kill,)
= (Gen,; U Gen,) U (x - (Kill, " Kill,))

1 1

Gen set after A Kill set after A

15-745: Region-Based Analysis 12



Operations on Transfer Functions: Closure

X F*(x) New Feature!
y — (We don’t have this in
iterative data flow analysis.)
F Gen
Kill
v

What is the value at the input of the block?

* including the possible effects of the back edge
- it may iterate 0, 1, 2, ..., e number of times

F*(x) = An=0}F" (x)

=X A F(x) A F(F(x)) A ... For Reaching Definitions
=x U (Gen U (x - Kill)) U (Gen U ((Gen U (x - Kill)) - Kill)) U ...
= Gen U (x - &)

0 )

Gen set Kill set (after closure)

15-745: Region-Based Analysis 13



Recap of Operations on Transfer Functions

For Reaching Definitions:
e Transfer Function (F(x)):

F(x) = Gen U (x — Kill)

* Composition (F,(F,(x))):
Gen = Gen, U (Gen, - Kill,)

Kill = Kill, W Kill,

* Meet: (F,(x) A F,(x)):
Gen = Gen, U Gen,
Kill = Kill, N Kill,

e Closure: (F*(x)):

Gen = Gen
Kill = J

15-745: Region-Based Analysis 14



B. Structure of Nested Regions

 Avregionin aflow graph is a set of nodes that
— includes a header, which dominates all other nodes in a region

* T1-T2 rule (Hecht & Ullman) for Flow Graphs:

* T1: Remove a loop
If nis a node with a loop, i.e. an edge n->n, delete that edge (all such edges for n)

* T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
then m may consume n by
deleting n and making all successors of n be successors of m.

15-745: Region-Based Analysis 15



_ T1: Remove n->n loops
Reducible Flow Graph T2: Remove a vertex

w/unique predecessor

* Inreduced graph:
— each vertex represents a subgraph of original graph (a region).
— each edge represents an edge in original graph
e Limit flow graph: result of exhaustive application of T1 and T2
— independent of order of application
— reducible flow graph: limit flow graph has a single vertex

15-745: Region-Based Analysis 16



T2: Remove a vertex

C. Transfer Functions for T2 Rule w/unique predecessor
\ /R R

(" H

Before After

N\

* Transfer function
Fr g summarizes the effect from beginning of R to end of B
Frin(H2): SUMmarizes the effect from beginning of R to beginning of H2

— Unchanged for blocks B in region R; (FR,B = FRl,B)
— Frint2) = Ap Frpp Where p is a predecessor block of H,
— For blocks B in region R: Fp 5 = Fgy 5 ° Frint)

15-745: Region-Based Analysis 17



Transfer Functions for T1 Rule

\_

R\

/

Observations:

— the header of R, (i.e. H) is also the header of R
— we already know how to get from H to B for every block Bin R;:i.e.Fg; 5

T1: Remove n->n loops

R: new region
(subsumes back edges
fromR, 2R,)

* this will be the last step in getting from the new R to B (composition)

— what’s new: we need to get from R to the input of H, including back edges!

* this involves both meet (A) and closure (*) operations

15-745: Region-Based Analysis

18



Transfer Functions for T1 Rule

\_

Py

R\

/

* Transfer Function Fg ;

T1: Remove n->n loops

R: new region
(subsumes back edges
fromR, 2R,)

— Fring) = (Ap Fryp)*, where p is a predecessor block of Hin R

— Fre=Frig° Frinm)

15-745: Region-Based Analysis



Example
Ry
R3
R
R, _

& \— y

) 5
R | Rule | R | Fring) Fra1 Frez Fres Froea

* R:region name; R’: region w/subsumed header; R”: region w/header that remains
* T, Frg=FgppforBeR”; Frg=FrpFrinr)fOrBeR’; Frinry)= Ap Frp, P € pred(HR’)

* T Feg=Frp® Frinwy Frinr) = (Ap Frip)™, p € pred(HR’)

15-745: Region-Based Analysis

20




Example
R4 Ry
Ra N
R, Rs B4
2, - |
GBI NE -
X —) 4
Bl
R Rule | R’ Frin(r) Frp1 Frp2 Fr83 Frpa
R, T, B, | Fa: Fas Faz © Friins2) -- ="
R, T, Ry | Fes Frie1 © Frainry) Frie2 © Frainra) Fes ="
R; T R, (FRZ,BI/\FRZ,BZ)* Fra1 ° Fra,in(r2) Fra2 © Frs,inr2) Fra,83 ° Frs,in(r2) -
R4 T, By | Frsp3/\Frse2 Frsp1 Frs82 Frsp3 Foa © Fra,in(sa)

R: region name; R’: region w/subsumed header; R”: region w/header that remains
T,: Frg=FggforBeR”; Frg=Fgppe Frin®) forBeR’; Frinw) =
Tt Fre=Frg® Frinry Frinry) = (Ap FR',P)*' p € pred(HR’)

Ap Frp, p € pred(HR’)

15-745: Region-Based Analysis

21




o(n)
entries

l1l. Complexity of Algorithm

OO O—D—

15-745: Region-Based Analysis

Y
— 7 3
— _J 4
R" | Frinry) | Froe1 Fre2 Fres Frea Fres
B, | Fe Fai° Fey Fs,
Ry | Fes Frigr© Fes Friga© Fes Fos
Ry | Fea Fro1° Fea Frop2° Fea Frop3° Fea Foa
Rs | Fes Frsp1° Fes Frsg2° Fes Frse3° Fes Fga© Fgs Fes
R,
FR4,in(R) B FR4,B /\
Bs | Fas ® Frajin(ra Bs R3
85 ° FRa in(Ra) Bs | Faa° Frajin(r3) B4/\
84 ° Frain(r3) Bs | Fs2° Frajinre) /
B
23 ° Frajin(r2) B, | Fs2° Frajinry 3 /Rl\
52 ° Frajin(r1) By | Fg1° Frainey) B B
. - 2 1

0(n?)
entries



Optimization

* Let m = number of edges, n = number of nodes

* Ideas for optimization

— If we compute Fg ; for every region B is in, then it is very expensive

— We are ultimately only interested in the entire region (E);
we need to compute only F¢ ; for every B.
* There are many common subexpressions between F¢ g, Fepy, ...
* Number of F; ; calculated = m
— Also, we need to compute Fg ¢z, Wwhere R’ represents the region whose
header is subsumed.
* Number of Fg 5 calculated, where R is not final = n

* Total number of F; 5 calculated: (m + n)

— Data structure keeps “header” relationship

* Practical algorithm: O(m log n)
* Complexity: O(ma(m,n)), ais inverse Ackermann function

15-745: Region-Based Analysis 23



N T1: Remove n->n loops
RedUC|b|I|tV T2: Remove a vertex
w/unique predecessor

« IfnoT1, T2 is applicable before graph is reduced to single node, then split node
(make k copies of node, one per predecessor) and continue

* Worst case: exponential

* Most graphs (including GOTO programs) are reducible

15-745: Region-Based Analysis 24



V. Comparison with Iterative Data Flow Analysis

* Applicability
— Definitions of F* can make technique more powerful than iterative algorithms
— Backward flow: reverse graph is not typically reducible.
* Requires more effort to adapt to backward flow than iterative algorithm
— More important for interprocedural optimization, optimizations related to loop
nesting structure

e Speed

— Irreducible graphs
* |terative algorithm can process irreducible parts uniformly
* Serious “irreducibility” can be slow with region-based analysis

— Reducible graphs?

15-745: Region-Based Analysis 25



Review: Speed of Convergence of Iterative Data Flow

* If cycles do not add information*
* information can flow in one pass down nodes of increasing order number:
* egul>4->5->7->2->6..
Y

first pass
* passes determined by number of back edges in the path

» essentially the nesting depth of the graph
 Number of iterations = number of back edges in any acyclic path + 2

 What s the depth?
— corresponds to depth of intervals for “reducible” graphs

* E.g., Reaching Definitions: if a defn d in node n, reaches a node n; along a path
that contains a cycle (i.e., a repeated node), then the cycle can be removed
to form a shorter path from n, to n; such that d reaches n.

15-745: Foundations of Data Flow 26



Comparison with Iterative Data Flow Analysis

Applicability

— Definitions of F* can make technique more powerful than iterative algorithms

— Backward flow: reverse graph is not typically reducible.

* Requires more effort to adapt to backward flow than iterative algorithm
— More important for interprocedural optimization, optimizations related to loop

nesting structure

Speed
— Irreducible graphs

* lIterative algorithm can process irreducible parts uniformly

* Serious “irreducibility” can be slow with region-based analysis
— Reducible graph & Cycles do not add information (common)

* |terative: (depth + 2) passes, O(m*depth) steps
depth is 2.75 average, independent of code length

* Region-based analysis: Theoretically almost linear, typically O(m log n) steps

— Reducible graph & Cycles add information*

* |terative takes longer to converge

* Region-based analysis remains the same

goto L

15-745: Region-Based Analysis

27

-

*E.g., Constant b=c

L:a=Db A

Propagation c=1




Today’s Class: Region-Based Analysis

|.  Basic Idea

II. Algorithm

Ill.  Optimization and Complexity

IV. Comparing region-based analysis with iterative algorithms

Wednesday

* Day of discussions on Project Proposal ideas

Friday’s Class

* Instruction Scheduling [ALSU 10.1-10.3]
e Discussion of Assignment #3

15-745: Region-Based Analysis 28




