Lecture 18

Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

Review: Iterative Data Flow Analysis

- Semi-lattice
 - set of values V
 - meet operator
 - Top **T**
 - finite descending chain?

Meet Operator: Union

Review: Iterative Data Flow Analysis

- Semi-lattice
 - set of values V
 - meet operator
 - Тор Т
 - finite descending chain?
- Transfer functions
 - function of a basic block f: $V \rightarrow V$
 - closed under composition
 - meet-over-paths MOP
 - monotone
 - distributive?

For each node *n*: MOP(*n*) = $\wedge f_{p_i}(T)$, for all paths *p* in data-flow graph reaching *n*.

If data flow framework is monotone (i.e., $x \le y$ implies $f(x) \le f(y)$) then if the algorithm converges, $IN[b] \le MOP[b]^*$, so analysis is ? safe.

Data flow framework (monotone) converges if its lattice has ? a finite descending chain.

If data flow framework is distributive (i.e., $f(x \land y) = f(x) \land f(y)$) then if the algorithm converges, IN[b] = MOP[b] *, so ? precision is high.

* for backward analysis OUT[b]

Review: Iterative Data Flow Analysis

B0 7 B0,B1,...,B6 is **Semi-lattice** • rPostOrder set of values V **B2 B1** 6 5 meet operator Top T finite descending chain? — **Transfer functions B**3 • 4 - function of a basic block f: $V \rightarrow V$ closed under composition **B5 B4** 3 2 meet-over-paths MOP monotone – distributive? **B6**

Algorithm ٠

- initialization step (entry/exit, other nodes) —
- repeated passes until find fixedpoint solution —
- visit order of each pass: rPostOrder —

1

Region-Based Analysis: Motivation

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - <u>This lecture</u>: can we use structure for speed?
 - Iterative algorithm for data flow
 - <u>This lecture</u>: an alternative algorithm
 - Reducibility
 - all retreating edges of DFS Tree are back edges (t->h, h dominates t)
 - reducible graphs converge quickly
 - <u>This lecture</u>: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure, e.g., global scheduling (Lecture 20)
- Theoretically interesting: better understanding of data flow

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first x dominates w (x dom w) iff x sdom w OR x = w

I. Big Picture

A **region** in a flow graph is a set of nodes with a **header** that dominates all other nodes in a region

Basic Idea

• In Iterative Analysis:

- DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B
- In Region-Based Analysis:
 - DEFINITION: Transfer function F_{R,B}: summarize effect from beginning of region R to end of basic block B
 - Recursively

construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
 - $\text{ out}[B] = F_{P,B}(v)$
 - in [B] = $\bigwedge_{B'}$ out[B'], where B' is a predecessor of B

II. Algorithm

- A. Operations on transfer functions
- B. How to build nested regions?
- C. How to construct transfer functions that correspond to the larger regions?

A. Operations on Transfer Functions

Example: Reaching Definitions

• Transfer function over a block:

 $F(x) = Gen \cup (x - Kill)$ Input parameters

- Resulting transfer functions (after operations) must be consistent with this form:
 - same equation
 - updated values for Gen and Kill set parameters

Operations on Transfer Functions: Composition

 $F_2 \circ F_1$

Χ

Operations on Transfer Functions: Meet

(Recall that for Reaching Definitions, $\land = \cup$.)

$$F_{1}(x) \wedge F_{2}(x) = Gen_{1} \cup (x - Kill_{1}) \cup Gen_{2} \cup (x - Kill_{2})$$
$$= (Gen_{1} \cup Gen_{2}) \cup (x - (Kill_{1} \cap Kill_{2}))$$
$$\uparrow$$
$$Gen \text{ set after } \wedge$$
$$Kill \text{ set after } \wedge$$

15-745: Region-Based Analysis

Operations on Transfer Functions: Closure

New Feature!

(We don't have this in iterative data flow analysis.)

Carnegie Mellon

What is the value at the input of the block?

including the possible effects of the back edge
→ it may iterate 0, 1, 2, ..., ∞ number of times

Recap of Operations on Transfer Functions

For Reaching Definitions:

• <u>Transfer Function</u> (F(x)):

 $F(x) = Gen \cup (x - Kill)$

• <u>Composition</u> (F₂(F₁(x))):

Gen = $\text{Gen}_2 \cup (\text{Gen}_1 - \text{Kill}_2)$ **Kill** = $\text{Kill}_1 \cup \text{Kill}_2$

• <u>Meet</u>: $(F_1(x) \land F_2(x))$:

 $Gen = Gen_1 \cup Gen_2$ $Kill = Kill_1 \cap Kill_2$

• <u>Closure</u>: (**F***(**x**)):

Gen = Gen Kill = ∅

B. Structure of Nested Regions

- A region in a flow graph is a set of nodes that
 - includes a **header**, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman) for Flow Graphs:
 - T1: Remove a loop

If n is a node with a loop, i.e. an edge n->n, delete that edge (all such edges for n)

• T2: Remove a vertex

If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

T1: Remove n->n loopsT2: Remove a vertexw/unique predecessor

- In reduced graph:
 - each vertex represents a subgraph of original graph (a **region**).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application
 - reducible flow graph: limit flow graph has a single vertex

• Transfer function

F_{R.B}: summarizes the effect from beginning of R to end of B

 $F_{R,in(H2)}$: summarizes the effect from beginning of R to beginning of H2

- Unchanged for blocks B in region $R_1 (F_{R,B} = F_{R1,B})$
- $F_{R,in(H2)} = \Lambda_P F_{R,P'}$ where p is a predecessor block of H₂
- For blocks B in region R_2 : $F_{R,B} = F_{R2,B} \circ F_{R,in(H2)}$

Transfer Functions for T1 Rule

R: new region (subsumes back edges from $R_1 \rightarrow R_1$)

T1: Remove n->n loops

Observations:

- the header of R_1 (i.e. H) is also the header of R
- we already know how to get from H to B for every block B in R_1 : i.e. $F_{R1,B}$
 - this will be the *last step* in getting from the new **R** to **B** (composition)
- <u>what's new</u>: we need to get from R to the input of H, including back edges!
 - this involves both meet (∧) and closure (*) operations

Transfer Functions for T1 Rule

R: new region (subsumes back edges from $R_1 \rightarrow R_1$)

T1: Remove n->n loops

- Transfer Function F_{R,B}
 - $F_{R,in(H)} = (\Lambda_P F_{R1,P})^*$, where p is a predecessor block of H in R - $F_{R,B} = F_{R1,B} \circ F_{R,in(H)}$

R	Rule	R'	F _{R,in(R')}	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}
R ₁	T ₂	B ₂					
R ₂	T ₂	R ₁					
R ₃	T ₁	R ₂					
R ₄	T ₂	B ₄					

- R: region name; R': region w/subsumed header; R": region w/header that remains
- T_2 : $F_{R,B} = F_{R'',B}$ for $B \in R''$; $F_{R,B} = F_{R',B} \circ F_{R,in(R')}$ for $B \in R'$; $F_{R,in(R')} = \bigwedge_P F_{R,P}$, $p \in pred(HR')$ • T_1 : $F_{R,B} = F_{R',B} \circ F_{R,in(R')}$; $F_{R,in(R')} = (\bigwedge_P F_{R',P})^*$, $p \in pred(HR')$

R	Rule	R'	F _{R,in(R')}	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}
R ₁	T ₂	B ₂	F _{B1}	F _{B1}	$F_{B2} \circ F_{R1,in(B2)}$		
R ₂	T ₂	R ₁	F _{B3}	$F_{R1,B1} \circ F_{R2,in(R1)}$	$F_{R1,B2} \circ F_{R2,in(R1)}$	F _{B3}	
R ₃	T ₁	R ₂	(F _{R2,B1} ∧F _{R2,B2})*	$F_{R2,B1} \circ F_{R3,in(R2)}$	F _{R2,B2} ° F _{R3,in(R2)}	F _{R2,B3} ∘ F _{R3,in(R2)}	
R ₄	T ₂	B ₄	F _{R3,B3} ∧F _{R3,B2}	F _{R3,B1}	F _{R3,B2}	F _{R3,B3}	F _{B4} ∘ F _{R4,in(B4)}

- R: region name; R': region w/subsumed header; R": region w/header that remains
- $T_2: F_{R,B} = F_{R'',B}$ for $B \in R''$; $F_{R,B} = F_{R',B} \circ F_{R,in(R')}$ for $B \in R'$; $F_{R,in(R')} = \bigwedge_P F_{R,P}$, $p \in pred(HR')$ • $T_1: F_{R,B} = F_{R',B} \circ F_{R,in(R')}$; $F_{R,in(R')} = (\bigwedge_P F_{R',P})^*$, $p \in pred(HR')$
 - **Carnegie Mellon**

III. Complexity of Algorithm

R	Rule	R'	F _{R,in(R')}	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}	F _{R,B5}	
R ₁	T ₂	B ₁	F _{B2}	$F_{B1} \circ F_{B2}$	F _{B2}				
R ₂	T ₂	R ₁	F _{B3}	$F_{R1,B1} \circ F_{B3}$	F _{R1,B2} ∘ F _{B3}	F _{B3}			e
R ₃	T ₂	R ₂	F _{B4}	F _{R2,B1} ∘ F _{B4}	F _{R2,B2} ∘ F _{B4}	F _{R2,B3} ∘ F _{B4}	F _{B4}		
R ₄	T ₂	R ₃	F _{B5}	$F_{R3,B1} \circ F_{B5}$	F _{R3,B2} ∘ F _{B5}	F _{R3,B3} ∘ F _{B5}	$F_{B4} \circ F_{B5}$	F _{B5}	

O(n)entries $R_{4} = F_{R4,in(R)}$ $R_{4} = I$ $R_{3} = F_{B5} \circ F_{R4,in(R4)}$ $R_{2} = F_{B4} \circ F_{R4,in(R3)}$ $R_{1} = F_{B3} \circ F_{R4,in(R2)}$

15-745: Region-Based Analysis

 B_1

 $F_{B2} \circ F_{R4,in(R1)}$

Optimization

- Let m = number of edges, n = number of nodes
- Ideas for optimization
 - If we compute $F_{R,B}$ for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only F_{E,B} for every B.
 - There are many common subexpressions between F_{E,B1}, F_{E,B2}, ...
 - Number of F_{E,B} calculated = m
 - Also, we need to compute $F_{R,in(R')}$, where R' represents the region whose header is subsumed.
 - Number of $F_{R,B}$ calculated, where R is not final = n
- Total number of F_{R,B} calculated: (m + n)
 - Data structure keeps "header" relationship
 - Practical algorithm: O(m log n)
 - Complexity: O(m α (m,n)), α is inverse Ackermann function

- If no T1, T2 is applicable before graph is reduced to single node, then split node (make k copies of node, one per predecessor) and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow Analysis

- Applicability
 - Definitions of F* can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization, optimizations related to loop nesting structure
- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with region-based analysis
 - Reducible graphs?

Review: Speed of Convergence of Iterative Data Flow

- If cycles do not add information*
 - information can flow in one pass down nodes of increasing order number:

- passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
- What is the depth?
 - corresponds to depth of intervals for "reducible" graphs

* E.g., Reaching Definitions: if a defn d in node n_1 reaches a node n_k along a path that contains a cycle (i.e., a repeated node), then the cycle can be removed to form a shorter path from n_1 to n_k such that d reaches n_k .

Comparison with Iterative Data Flow Analysis

- Applicability
 - Definitions of F* can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization, optimizations related to loop nesting structure
- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with region-based analysis
 - Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes, O(m*depth) steps depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically O(m log n) steps
 - Reducible graph & Cycles add information*
 - Iterative takes longer to converge
 - Region-based analysis remains the same

Today's Class: Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

<u>Wednesday</u>

• Day of discussions on Project Proposal ideas

Friday's Class

- Instruction Scheduling [ALSU 10.1-10.3]
- Discussion of Assignment #3