
Carnegie Mellon

Lecture 19

Instruction Scheduling

Phillip B. Gibbons 15745: Instruction Scheduling 1

[ALSU 10.1-10.3]

I. Hardware Support for Parallel Execution
II. Constraints on Scheduling
III. List Scheduling

Carnegie Mellon

Optimization: What’s the Point? (A Quick Review)

Machine-Independent Optimizations:

– e.g., constant propagation & folding, redundancy elimination, dead-code
elimination, etc.

– Goal: eliminate work

Machine-Dependent Optimizations:

– register allocation, locality optimizations

• Goal: reduce cost of accessing data

– instruction scheduling

• Goal: ???

15745: Instruction Scheduling 2

Carnegie Mellon

The Goal of Instruction Scheduling

• Assume that the remaining instructions are all essential

– (otherwise, earlier passes would have eliminated them)

• How can we perform this fixed amount of work in less time?

– Answer: execute the instructions in parallel

3

a = 1 + x;

b = 2 + y;

c = 3 + z;

Time

a = 1 + x; b = 2 + y; c = 3 + z;a = 1 + x; b = 2 + y; c = 3 + z;

15745: Instruction Scheduling

Carnegie Mellon

I. Hardware Support for Parallel Execution

• Three forms of parallelism are found in modern machines:

– Pipelining

– Superscalar Processing

– Multicore

4

} Instruction Scheduling

Automatic Parallelization
[Lecture 16]

15745: Instruction Scheduling

Carnegie Mellon

Pipelining

Basic idea:

– break instruction into stages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

5

Time

1 instruction

IF RF EX ME WB
IF = Instruction Fetch
RF = Decode & Register Fetch
EX = Execute on ALU
ME = Memory Access
WB = Write Back to Register File

15745: Instruction Scheduling

Carnegie Mellon

Pipelining Illustration

6

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling

Carnegie Mellon

Pipelining Illustration

• In a given cycle, each instruction is in a different stage

7

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling

Carnegie Mellon

Beyond 5-Stage Pipelines: Even More Parallelism

• Should we simply make pipelines deeper and deeper?

– registers between pipeline stages have fixed overheads

• hence diminishing returns with more stages (Amdahl’s Law)

– value of pipe stage unclear if it takes less time than an integer add

• However, many consumers think “performance = clock rate”

– perceived need for higher clock rates -> deeper pipelines

– e.g., Pentium 4 processor had a 20-stage pipeline [2000-2008]

8

IF RF EX ME WB

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

15745: Instruction Scheduling

Carnegie Mellon

Beyond Pipelining: “Superscalar” Processing

• Basic Idea:

– multiple (independent) instructions can proceed simultaneously through the
same pipeline stages

• Requires additional hardware

– example: “Execute” stage

9

EX

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

Abstract
Representation

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

Hardware for
Scalar Pipeline:

1 ALU

Hardware for
2-way Superscalar:

2 ALUs

P
ip

e
R

eg
is

te
r

P
ip

e
R

eg
is

te
r

r1+r2 r1+r2

r3+r4

15745: Instruction Scheduling

Carnegie Mellon

Superscalar Pipeline Illustration

Original (scalar) pipeline:

• Only one instruction in a given pipe
stage at a given time

Superscalar pipeline:

• Multiple instructions in the same pipe
stage at the same time

• Unlike SIMD/vector instructions,
instructions of different types can be
in the same pipe stage at same time

10

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling

Carnegie Mellon

II. Constraints on Scheduling

1. Hardware Resources

2. Data Dependences

3. Control Dependences

1115745: Instruction Scheduling

Carnegie Mellon

Constraint #1: Hardware Resources

• Processors have finite resources, and there are often constraints on how these
resources can be used.

Examples:

– Finite issue width

– Limited functional units (FUs) per given instruction type

– Limited pipelining within a given functional unit (FU)

1215745: Instruction Scheduling

Carnegie Mellon

Finite Issue Width

• Prior to superscalar processing:

– processors only “issued” one instruction per cycle

• Even with superscalar processing:

– limit on total # of instructions issued per cycle

13

Issue Width = infinite Issue Width = 4
Time

1

≥ N/4

15745: Instruction Scheduling

Carnegie Mellon

Limited FUs per Instruction Type

• e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1 memory,
and 1 floating-point insts per cycle

14

Unconstrained

3

12

Time

Original Code

Integer

Memory

Floating-Point

Int Mem FP

More Realistic

5

Empty Slot

Bottleneck

15745: Instruction Scheduling

Carnegie Mellon

Limited Pipelining within a Functional Unit

• e.g., only 1 new floating-point division once every 2 cycles

15

12

Time

Original Code

Integer

Memory

Floating-Point

Int Mem FP

9

Empty Slot

Schedule with Limited Pipelining

15745: Instruction Scheduling

Carnegie Mellon

Constraints on Scheduling

1. Hardware Resources

2. Data Dependences

3. Control Dependences

1615745: Instruction Scheduling

Carnegie Mellon

Constraint #2: Data Dependences (Review)

• If we read or write a data location “too early”, the program may behave
incorrectly.

17

y = x;

x = 1;

x = 1;

x = 2;

x = 1;

y = x;

(Assume that initially, x = 0.)

x = 1;

y = x;

x = 1;

x = 2;

y = x;

x = 1;

Read-after-Write
(“True” dependence)

Write-after-Write
(“Output” dependence)

Write-after-Read
(“Anti” dependence)

??? ??? ???

Can potentially fix through renaming.

1 1

Fundamental
(no simple fix)

15745: Instruction Scheduling

Carnegie Mellon

Why Data Dependences are Challenging

• Which of these instructions can be reordered?

• ambiguous data dependences are very common in practice

– difficult to resolve, despite fancy pointer analysis [Lecture 13]

18

x = a[i];

*p = 1;

y = *q;

*r = z;

15745: Instruction Scheduling

Carnegie Mellon

Given Ambiguous Data Dependences, What To Do?

• Conservative approach: don’t reorder instructions

– ensures correct execution

– but may suffer poor performance

• Aggressive approach?

– is there a way to safely reorder instructions?

19

x = a[i];

*p = 1;

y = *q;

*r = z;

15745: Instruction Scheduling

Carnegie Mellon

Hardware Limitations: Multi-cycle Execution Latencies

• Simple instructions often “execute” in one cycle

– (as observed by other instructions in the pipeline)

– e.g., integer addition

• More complex instructions may require multiple cycles

– e.g., integer division, square-root

– cache misses!

• These latencies, when combined with data dependencies, can result in non-trivial
critical path lengths through code

2015745: Instruction Scheduling

Carnegie Mellon

Constraints on Scheduling

1. Hardware Resources

2. Data Dependences

3. Control Dependences

2115745: Instruction Scheduling

Carnegie Mellon

Constraint #3: Control Dependences

• What do we do when we reach a conditional branch?

– choose a “frequently-executed” path?

– choose multiple paths?

2215745: Instruction Scheduling

Carnegie Mellon

Scheduling Constraints: Summary

• Hardware Resources

– finite set of FUs with instruction type, bandwidth, and latency constraints

– cache hierarchy also has many constraints

• Data Dependences

– can’t consume a result before it is produced

– ambiguous dependences create many challenges

• Control Dependences

– impractical to schedule for all possible paths

– choosing an “expected” path may be difficult

• recovery costs can be non-trivial if you are wrong

2315745: Instruction Scheduling

Carnegie Mellon

III. List Scheduling

• The most common technique for scheduling instructions within a basic block

Basic block scheduling doesn’t need to worry about:

– control flow [topic of next lecture]

Does need to worry about:

– data dependences

– hardware resources

• Even without control flow, the problem is still NP-hard

…
y = c + d

x = a + b

2415745: Instruction Scheduling

Carnegie Mellon

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:

– “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J. Schielke, and
Devika Subramanian. Rice University, Dept of Computer Science Tech. Rep. 98-326, 1998.

– “Despite the importance of scheduling, we know quite little about the behavior of list
scheduling—the most widely used technique for instruction scheduling [1, 3].”

Inputs: Output:
Data Precedence

Graph (DPG)
Machine

Parameters
Scheduled Code

I0

I4

I5

I7

I2

I1

I8

I10

I3

I6

I9

I11

Cycle

0

1

2

3

4

I0 I2

I4I3

I6 I8

I1

I5

I9

of FUs:
2 INT, 1 FP

Latencies:
add = 1 cycle, …

Pipelining:
1 add/cycle, …

2515745: Instruction Scheduling

ALU 0 ALU 1 FP

I10I7 I11

Carnegie Mellon

List Scheduling: The Basic Idea

• Maintain a list of instructions that are ready to execute

– data dependence constraints would be preserved

– machine resources are available

• Moving cycle-by-cycle through the schedule template:

– choose instructions from the list & schedule them

– update the list for the next cycle

I2 I0

Cycle

0

1

2

2615745: Instruction Scheduling

Carnegie Mellon

What Makes Life Interesting: Choice

Easy case:

– all ready instructions can be scheduled this cycle

Interesting case:

– we need to pick a subset of the ready instructions

• List scheduling makes choices based upon priorities

– assigning priorities correctly is a key challenge

I5 I1 I7

I5 I1 I2 I7I0 ???

2715745: Instruction Scheduling

Carnegie Mellon

List Scheduling Example

I0: a = 1

I1: f = a + x

I2: b = 7

I3: c = 9

I4: g = f + b

I5: d = 13

I6: e = 19

I7: h = f + c

I8: j = d + y

I9: z = -1

I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0

1

2

3

4

5

6

28

• 2 identical fully-pipelined FUs

• adds take 2 cycles; all other insts take 1 cycle

15745: Instruction Scheduling

Suppose: Assign priorities based on instruction number

Carnegie Mellon

Intuition Behind Priorities

• Intuitively, what should the priority correspond to?

• What factors are used to compute it?

– data dependences?

– machine parameters?

of FUs:
2 INT, 1 FP

Latencies:
add = 1 cycle, …

Pipelining:
1 add/cycle, …

2915745: Instruction Scheduling

I0 I2

I4I3

I6 I8

I1

I5

I9I7

Carnegie Mellon

Representing Data Dependences:
The Data Precedence Graph (DPG)

• Two different kinds of edges:

• Why distinguish them?

– do they affect scheduling differently?

• What about output dependences?

I0: x = 1;

I1: y = x;

I2: x = 2;

I3: z = x;

I2

I0

I3

I1

DPG
Code

true “edges”: E
(read-after-write) e = (I0,I1)

e = (I2,I3)

x

x
“anti-edges”: E’

(write-after-read) e’ = (I1,I2)

3015745: Instruction Scheduling

Carnegie Mellon

Computing Priorities

• Let’s start with just true dependences (i.e. “edges” in DPG)

• Priority = latency-weighted depth in the DPG

I0 I2

I4I3

I6 I8

I1

I5

I9

3115745: Instruction Scheduling

I7

Carnegie Mellon

Computing Priorities (Cont.)

• Now let’s also take anti-dependences into account

– i.e. anti-edges in the set E’

I0 I2

I4I3

I6 I8

I1

I5

I9

e’e’

3215745: Instruction Scheduling

I7

Carnegie Mellon

List Scheduling Algorithm

cycle = 0;

ready-list = root nodes in DPG;

inflight-list = {};

while (|ready-list|+|inflight-list| > 0) {

for op = (all nodes in ready-list in decreasing priority order) {

if (an FU exists for op to start at cycle) {

remove op from ready-list and add to inflight-list;

add op to schedule at time cycle;

if (op has an outgoing anti-edge)

add all targets of op’s anti-edges that are ready to ready-list;

}

}

cycle = cycle + 1;

for op = (all nodes in inflight-list)

if (op finishes at time cycle) {

remove op from inflight-list;

check nodes waiting for op &
add to ready-list if all operands available;

}

}

}

3315745: Instruction Scheduling

ties?

Carnegie Mellon

List Scheduling Example

I0: a = 1

I1: f = a + x

I2: b = 7

I3: c = 9

I4: g = f + b

I5: d = 13

I6: e = 19

I7: h = f + c

I8: j = d + y

I9: z = -1

I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0

1

2

3

4

5

6

34

• 2 identical fully-pipelined FUs

• adds take 2 cycles; all other insts take 1 cycle

15745: Instruction Scheduling

Break ties by lower
instruction number

Carnegie Mellon

What if break ties differently?

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0

1

2

3

4

5

6

35

• 2 identical fully-pipelined FUs

• adds take 2 cycles; all other insts take 1 cycle

15745: Instruction Scheduling

1

2 3 3 2 3

444 5

6
I0: a = 1

I1: f = a + x

I2: b = 7

I3: c = 9

I4: g = f + b

I5: d = 13

I6: e = 19

I7: h = f + c

I8: j = d + y

I9: z = -1

I10: JMP L1

Carnegie Mellon

I3 I8

Contrasting the Two Schedules

• Breaking ties arbitrarily may not be the best approach

Cycle

0

1

2

3

4

5

6

Cycle

0

1

2

3

4

5

3615745: Instruction Scheduling

I0 I2

I1 I3

I5 I6

I4 I7

I8 I9

-- --

I10 --

I0 I2

I1 I5

I4 I7

I6 I9

I10 --

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

1

2 3 3 2 3

444 5

6

Carnegie Mellon

Backward List Scheduling

Modify the algorithm as follows:

– reverse the direction of all edges in the DPG

– schedule the finish times of each operation

• start times must still be used to ensure Functional Unit availability

37

Forward Scheduling Priorities
(build up priorities upwards, schedule downwards)

Backward Scheduling Priorities
(build up priorities downwards, schedule upwards)

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

15745: Instruction Scheduling

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

1

2 3 3 2 3

444 5

6

Carnegie Mellon

Backward List Scheduling

Modify the algorithm as follows:

– reverse the direction of all edges in the DPG

– schedule the finish times of each operation

• start times must still be used to ensure FU availability

Impact of scheduling backwards:

– clusters operations near the end (vs. the beginning)

– may be either better or worse than forward scheduling

3815745: Instruction Scheduling

Carnegie Mellon

Backward List Scheduling Example:
Let’s Schedule it Forward First

Hardware parameters:

– 2 INT units: ADDs take 2 cycles; others take 1 cycle

– 1 MEM unit: stores (ST) take 4 cycles

Cycle
0
1
2
3
4
5
6
7
8
9

10
11
12

INT INT MEM

3915745: Instruction Scheduling

LDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR

8 8 8 8 8

1

2 5 5 5 55

7 7 7 7 7

Break ties left-to-right
in above dag

LDI=load immediate, LSL=logical shift left

Carnegie Mellon

Now Let’s Try Scheduling Backward

Cycle
0
1
2
3
4
5
6
7
8
9

10
11

INT INT MEMLDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR 8

111

3

71 7 7 7 6

3 3 3 2

1 1

4015745: Instruction Scheduling

Hardware parameters:

– 2 INT units: ADDs take 2 cycles; others take 1 cycle

– 1 MEM unit: stores (ST) take 4 cycles
Break ties left-to-right

in above dag

Carnegie Mellon

LDId ---- ----
ADDI LDIc ----
ADDd LSL ----
ADDc LDIb STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

Contrasting Forward vs. Backward
List Scheduling

• backward scheduling clusters work near the end

• backward is better in this case, but this is not always true

Cycle
0
1
2
3
4
5
6
7
8
9

10
11

INT INT MEMCycle
0
1
2
3
4
5
6
7
8
9

10
11
12

INT INT MEM
LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR ---- ----

Forward Backward

4115745: Instruction Scheduling

Carnegie Mellon

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:

– schedule each block M times forward & backward

– break any priority ties randomly

For real programs:

– regular list scheduling works very well

For synthetic blocks:

– RBF wins when “available parallelism” (AP) is ~2.5

– for smaller AP, scheduling is too constrained

– for larger AP, any decision tends to work well

4215745: Instruction Scheduling

Carnegie Mellon

List Scheduling Wrap-Up

• The priority function can be arbitrarily sophisticated

– e.g., filling branch delay slots in early RISC processors

• List scheduling is widely used for instruction scheduling on in-order processors,
and it works fairly well

• However, it has two limitations:

– It schedules only within a basic block

• Next lecture will cover global scheduling

– Modern out-of-order processors perform their own dynamic scheduling

• List scheduling can be used to feed the dynamic scheduler in a good order

4315745: Instruction Scheduling

Carnegie Mellon

List Scheduling Wrap-Up

4415745: Instruction Scheduling

“An Experimental Evaluation of List Scheduling", Cooper, Schielke, Subramanian.

“Despite the importance of scheduling, we know quite little about the behavior of list scheduling—
the most widely used technique for instruction scheduling [1, 3].”

Carnegie Mellon

4515745: Instruction Scheduling

[My first publication.
“PLDI” 1986]

Carnegie Mellon

4615745: Instruction Scheduling

[My first publication.
“PLDI” 1986]

Carnegie Mellon

Today’s Class: Instruction Scheduling

4715-745: Instruction Scheduling

Coming Attractions

• Monday: No class. Project Proposals due midnight

• Wednesday: Instruction Scheduling – the sequel

I. Hardware Support for Parallel Execution
II. Constraints on Scheduling
III. List Scheduling

