
Carnegie Mellon

Lecture 22

Locality Analysis and Prefetching

Phillip B. Gibbons 15-745: Locality Analysis and Prefetching 1

[ALSU 11.5]

I. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

II. Prefetching Pointer-Based Structures

Carnegie Mellon

I. Recall: Steps in Locality Analysis

1. Find data reuse (“reuse analysis”)

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse  localized iteration space  locality

Carnegie Mellon

i

j

B[j+1][0]

i

j

B[j][0]

Recall: Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial TemporalTemporal

(assume row-major, 2 elements per cache line, N small)

(Self) (Self)

15-745: Locality Analysis 3

(Group)
except for

Carnegie Mellon

Recall: Reuse Analysis Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Carnegie Mellon

A. Finding Temporal Reuse

• Temporal reuse occurs between iterations and whenever:

• For B[j+1][0] reuse between iterations (i1,j1) and (i2,j2) whenever:

➢ i.e., whenever j1 = j2, and regardless of the difference between i1 and i2

Carnegie Mellon

• Temporal reuse occurs between iterations and whenever:

• There is a well-known concept from linear algebra that characterizes when
and satisfy the above equation:

➢ Set of all solutions to H v = 0 is called the nullspace of H

➢ Two iterations refer to the same array element iff the difference of their
loop-index vectors is in the nullspace of H

• A nullspace can be summarized by its basis vectors

➢ Any vector in the nullspace is a linear combination of the basis vectors

Nullspace and Basis Vectors

615-745: Locality Analysis

Carnegie Mellon

Nullspace & Basis Vector Example

• For B[j+1][0] reuse between iterations (i1,j1) and (i2,j2) whenever:

• The nullspace of is summarized by the basis vector because

represents all the vectors v such that v =

• So reuse occurs whenever =

➢ i.e., whenever j1 = j2, and regardless of the difference between i1 and i2

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

c

c
inner or outer loop?

outer

15-745: Locality Analysis 7

Carnegie Mellon

More Complicated Example

• Nullspace of is summarized by the basis vector

• So reuse occurs whenever =

➢ i.e., when Δ𝑖 = −Δ𝑗

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

Hit

Miss

i

j

1
-1

c 1
-1

15-745: Locality Analysis 8

Carnegie Mellon

B. Computing Spatial Reuse

• We assume two array elements share the same cache line
iff they differ only in the last dimension

– E.g., share the same row in a 2-dimensional array

– Why is this a reasonable approximation?

– What are its limitations?

• Replace last row of H with zeros, creating Hs

• Find the nullspace of Hs

• Result: vector along which we access the same row

row major order

A row is made up of many cache lines
Large row could be larger than the cache

15-745: Locality Analysis 9

Carnegie Mellon

Computing Spatial Reuse: Example

• H = Hs =

• Nullspace of Hs is summarized by the basis vector

• So spatial reuse occurs whenever =

➢ i.e., whenever i1 = i2, and regardless of the difference between j1 and j2

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit

Miss

0
1

c 0
1

inner or outer loop?

inner

15-745: Locality Analysis 10

Carnegie Mellon

C. Group Reuse (reuse from different static accesses)

• Limit the analysis to consider only accesses with same H

– i.e., index expressions that differ only in their constant terms

• Determine when access same location (temporal) or same row (spatial)

• Only the “leading reference” suffers the bulk of the cache misses

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
H =

i

j

B[j][0]

i

j

B[j+1][0]

15-745: Locality Analysis 11

Carnegie Mellon

D. Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2

for j = 0 to 7

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

Localized: both i and j loops

i

j

B[j+1][0]

for i = 0 to 2

for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

Localized: j loop only

Basis = , 0
1

1
0

0
1

Basis =

15-745: Locality Analysis 12

Carnegie Mellon

Computing Locality

• Example:

• If N is small, then both loops are localized:

– span{ }  span{ , }  span{ }

– i.e., temporal reuse does result in temporal locality

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Reuse Vector Space  Localized Vector Space  Locality Vector Space

i

j

B[j+1][0]

0
1

1
0

1
0

1
0

15-745: Locality Analysis 13

Carnegie Mellon

Computing Locality

• Example:

• If N is large, then only the innermost loop is localized:

– span{ }  span{ }  span{}

– i.e., no temporal locality

Reuse Vector Space  Localized Vector Space  Locality Vector Space

i

j

B[j+1][0]

1
0

0
1

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

15-745: Locality Analysis 14

Carnegie Mellon

Locality Analysis Summary

1. Find data reuse

– Temporal reuse: Compute the nullspace of H

– Spatial reuse: Compute the nullspace of Hs , which is H with last row zeroed out

– If caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected to fit
within the cache

3. Find data locality:

– reuse  localized iteration space  locality

15-745: Locality Analysis 15

Carnegie Mellon

II. Prefetching

Recall: Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

• Loop Splitting

• Software Pipelining

15-745: Prefetching Pointer Structures 16

Carnegie Mellon

Recall: Prefetch Predicate

Example:

15-745: Prefetching Pointer Structures 17

Locality Type Miss Instance Predicate on Iteration Space

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every L iterations
(L elements/cache line)

(i mod L) = 0

for i = 0 to 2

for j = 0 to N-2

A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate on Iteration Space

A[i][j]

B[j+1][0]

none
spatial

temporal
none

[]
[]

[ij] =

[ij] = i = 0

(j mod L) = 0

Carnegie Mellon

Recall: Loop Splitting for Prefetching Arrays

• Decompose loops to isolate cache miss instances

– cheaper than inserting IF(Prefetch Predicate) statements

15-745: Prefetching Pointer Structures 18

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0

Spatial (i mod L) = 0

(L elements/cache line)

Loop peeling: split any problematic first (or last) few iterations from the loop
& perform them outside of the loop body

Peel loop i

Unroll loop i by L

i

j

i

j

Carnegie Mellon

Recall: Example Code with Prefetching

15-745: Prefetching Pointer Structures 19

for (i = 0; i < 3; i++)

for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&B[0][0]);

for (j = 0; j < 6; j += 2) {

prefetch(&B[j+1][0]);

prefetch(&B[j+2][0]);

prefetch(&A[0][j]);

}

for (j = 0; j < 94; j += 2) {

prefetch(&B[j+7][0]);

prefetch(&B[j+8][0]);

prefetch(&A[0][j+6]);

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (i = 1; i < 3; i++) {

for (j = 0; j < 6; j += 2)

prefetch(&A[i][j]);

for (j = 0; j < 94; j += 2) {

prefetch(&A[i][j+6]);

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

}

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit

Cache Miss
i = 0

i > 0

Carnegie Mellon

Today: Prefetching for Pointer-Based Structures

• Examples:

– linked lists, trees, graphs, ...

• A common method of building large data structures

– especially in non-numeric programs

• Cache miss behavior is a concern because:

– large data set with respect to the cache size

– temporal locality may be poor

– little spatial locality among consecutively-accessed nodes

Goal:

• Automatic compiler-based prefetching for pointer-based data structures

2015-745: Prefetching Pointer Structures

Carnegie Mellon

Scheduling Prefetches for Pointer-Based Data Structures

21

ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency

• thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0

while (p){

work(p ->data);

p = p->next ;

}

loa d *p here

Our Goal: fully hide latency

– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

15-745: Prefetching Pointer Structures

Carnegie Mellon

Performance without Prefetching

22

Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li
Wi

Li+2
Wi+2

Li+3 Wi+3

Time

while (p){

work(p ->data);

p = p->next;

}

computation rate = 1 / (L+W)

15-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(p i->next)

while (p){

pf(p->next);

work(p ->data);

p = p->next;

}

Li

Li+1

Li+2

Li+3

visiting

Time

• Comp uta tio n is overla p ped with memory a c c esses

work(nk)Wk

Lk load ing nk

da ta d epend enc e

Prefetching One Node Ahead

23

• Computation is overlapped with memory accesses

computation rate = 1/L

15-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(p i->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni
Wi

Wi+2

Wi+3

while (p){

pf(p->next->next->next);

work(p ->data);

p = p->next;

}

L

Prefetching Three Nodes Ahead

2415-745: Prefetching Pointer Structures

Carnegie Mellon

Prefetching Three Nodes Ahead

25

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(p i->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni
Wi

Wi+2

Wi+3

while (p){

pf(p->next->next->next);

work(p ->data);

p = p->next;

}

L

q=p->next->next;
while(q) {

pf(q=q->next);

pf(q=q->next);

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L

15-745: Prefetching Pointer Structures

Carnegie Mellon

Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2
Wi+2

Li+3
Wi+3

while (p){

pf(&ni+3);

work(p ->data);

p = p->next;

}

pf(&ni+3)

visiting

Time

 achieves the fastest possible computa tion rate of 1/ W

pre fetc h

Our Goal: Fully Hide Latency

26

• achieves the fastest possible computation rate of 1/W

15-745: Prefetching Pointer Structures

Carnegie Mellon

Overcoming the Pointer-Chasing Problem

Key:

• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Three Algorithms:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

– Data-Linearization Prefetching

2715-745: Prefetching Pointer Structures

Overcoming the Pointer-Chasing Problem

Key:

Our proposals:

use existing po inter(s) in n i to a pproximate &n i+d

a dd new po inter(s) to n i to a pproximate &n i+d

c ompute &n i+d directly from &n i (no ptr. d eref.)

 ni needs to know &ni+d without referencing the d-1 intermediate nodes

ni ni+d

an existing p ointer

ni ni+d

a new p ointer

A
&n i &n i+d

A=Add ress ge nera ting func tion

ni ni+d

Greedy Prefetching

History-Pointer Prefetching

Data-Linearization Prefetching

Carnegie Mellon

• Prefetch all neighboring nodes (simplified definition)

– only one will be followed by the immediate control flow

– hopefully, we will visit other neighbors later

• Reasonably effective in practice

• However, little control over the prefetching distance

28

1

2

missmissmiss partial
miss

hit

3

4

8 10

6

12 14

5

9 11

7

13 15

preorder(treeNode * t){

if (t != NULL){

pf(t->left);

pf(t->right);

process(t->data);

preorder(t->left);

preorder(t->right);

}

}

Greedy Prefetching

15-745: Prefetching Pointer Structures

Carnegie Mellon

History-Pointer Prefetching

• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances

29

1

2
4

8
9

5

10
11

3
6

preorder

15-745: Prefetching Pointer Structures

8 9 11 15

1

2 3

4 5 7

10 12 13 14

3

11

10

6

12

5

9

youngest

oldest

FIFO (d=3)

6

existing history-pointer

history-pointer being added

6 currently visiting

Carnegie Mellon

Data-Linearization Prefetching

• No pointer dereferences are required

• Map nodes close in the traversal to contiguous memory

30

8 9 11 15

1

2 3

4 5 6 7

10 12 13 14

preorder

traversal

1 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15

15-745: Prefetching Pointer Structures

Carnegie Mellon

Summary of Prefetching Algorithms for Pointer Structures

31

Greedy History-Pointer Data-Linearization

Control over Prefetching
Distance

little more precise more precise

Applicability to Pointer-
Based Data Structures

any revisited; changes
only slowly

must have a major
traversal order; changes

only slowly

Overhead in Preparing
Prefetch Addresses

none space + time space if done as shadow
structure

Ease of Implementation relatively
straightforward

more difficult more difficulty

15-745: Prefetching Pointer Structures

Carnegie Mellon

Summary of Prefetching Algorithms for Pointer Structures

• Greedy prefetching is the most widely applicable algorithm

32

Greedy History-Pointer Data-Linearization

Control over Prefetching
Distance

little more precise more precise

Applicability to Pointer-
Based Data Structures

any revisited; changes
only slowly

must have a major
traversal order; changes

only slowly

Overhead in Preparing
Prefetch Addresses

none space + time space if done as shadow
structure

Ease of Implementation relatively
straightforward

more difficult more difficulty

15-745: Prefetching Pointer Structures

Carnegie Mellon

Today’s Class: Locality Analysis and Prefetching

3315-745: Locality Analysis and Prefetching

Friday’s Class

• Register Allocation: Coalescing

I. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

II. Prefetching Pointer-Based Structures

