Lecture 22

Locality Analysis and Prefetching

. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

Il. Prefetching Pointer-Based Structures

[ALSU 11.5]

I Carnegie Melion [

Phillip B. Gibbons 15-745: Locality Analysis and Prefetching 1

|. Recall: Steps in Locality Analysis

1. Find data reuse (“reuse analysis”)
— if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

— set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

— reuse N localized iteration space = locality

-]
Recall: Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2

for j = 0 to N-2 O Hit
A[i][j] = B[Jj1[0] + B[j+1]1[0]; @ Miss
Ali] []j] B[j][O0] B[j+1][0]
"@0@0@00000 T00000000 0000000
Q0000000 O0000000O0 OQO000000O0
Q00 O00e0O00eo Q0000000 o0 000000
. Jj J 3
Spatial Temporal Temporal
(Self) (Group) (Self)
except for O

(assume row-major, 2 elements per cache line, N small)

I Carnegie Melion [

15-745: Locality Analysis 3

Recall: Reuse Analysis Representation

for i = 0 to 2
for §j = 0 to N-2
A[i][j] = B[J]1[0] + B[j+1][O0]:

 Map nloop indices into d array indices via array indexing function:

f() =Hr+¢

ren 1 0|[s],]0]
A[il[j] = A (_ 01| _-+-_ 0 _)
B[j][O]=B<8é ;+8)
B[j+11[0] = B(0 g ;’ + é)

A. Finding Temporal Reuse

Temporal reuse occurs between iterations 71and 72 whenever:
Hy4+c=Hwn+c
H(ip — 1) =0

For B[j+1] [0] reuse between iterations (i,j,) and (i,,j,) whenever:
0 1]/ (1] [0 1] 1
oollalls)=la][]+ 1o

[0 1_[7;17;2]:-0]
0 0| J1—1J2 0

> i.e., whenever j, =j,, and regardless of the difference between i, and i,

I Carnegie Melion [

Nullspace and Basis Vectors

« Temporal reuse occurs between iterations Z1and %2 whenever:
— — — —
Hiyy+c= Hiy +c
— — ~
H(; —1) =0
* There is a well-known concept from linear algebra that characterizes when
71 and 1> satisfy the above equation:

> Set of all solutionsto Hv =20 is called the nullspace of H

> Two iterations refer to the same array element iff the difference of their
loop-index vectors is in the nullspace of H

* A nullspace can be summarized by its basis vectors
> Any vector in the nullspace is a linear combination of the basis vectors

I Carnegie Melion [

15-745: Locality Analysis 6

Nullspace & Basis Vector Example

for i = 0 to 2

for j = 0 to 100 ‘/’/

A[i] [3] B[j]1[0] + B[j+1][0];
* For B[3+1] [O]

reuse between iterations (i,,j;) and (i,,j,) whenever:
0 1]/ (1] [0 1]]ip 1
oolla]+[o]=[0sl[2]+]s
0 1] 11 — 19 _ [0
0 O]|J1—J2 0
01

: : : 1 1

0 o] is summarized by the basis vector [o] because C[o]
01 0

represents all the vectors v such that [] V= []

* The nullspace of [

0O 0 0 .
inner or outer loop?

i — 1 1
e Soreuse occurs whenever [1772] = c[] outer

Jj1— 72 0

> i.e., whenever j, = j,, and regardless of the difference between i; and i,

T carnegie Melion |
15-745: Locality Analysis 7

More Complicated Example

for i = 0 to N-1

O Hit
@ Miss

for § = 0 to N-1
A[i+3][0] = i*];

. B 1 1[4
s =s([1 3]

* Nullspace of

’|

1 1], , -
00]IS summarized by the basis vector

e Soreuse occurs whenever | ‘1~ %2 |= ¢| !
J1—J2 1

> i.e., when Ai = —Aj

Carnegie Mellon -

15-745: Locality Analysis 8

-]
B. Computing Spatial Reuse

* We assume two array elements share the same cache line
iff they differ only in the last dimension

— E.g., share the same row in a 2-dimensional array
— Why is this a reasonable approximation? row major order

— What are its limitations? A row is made up of many cache lines
Large row could be larger than the cache

* Replace last row of H with zeros, creating H,
* Find the nullspace of H,

Result: vector along which we access the same row

I Carnegie Melion [

15-745: Locality Analysis 9

Computing Spatial Reuse: Example

for i =0 to 2 00000000 [o.
for 3 = 0 to 100 _ . 0000000 ® Miss
A[i][3]1 = B[31[0] + B[3j+1][0]; @0 000e00eo
]
N 1 0 7 0
SR P HEH)
1 0 1 0
0
Nullspace of H, is summarized by the basis vector | 1 inner or outer loop?
So spatial reuse occurs whenever [i] = C O] e
j1 —J2 1

> i.e., whenever i, =i,, and regardless of the difference between j, and j,

I Carnegie Melion [

15-745: Locality Analysis 10

C. Group Reuse (reuse from different static accesses)

for i = 0 to 2
for j = 0 to 100

A[i1[3] = B[31[0] + B[3+1][0]; o1
N 7 00

* Limit the analysis to consider only accesses with same H

— i.e., index expressions that differ only in their constant terms
 Determine when access same location (temporal) or same row (spatial)
* Only the “leading reference” suffers the bulk of the cache misses

B[j][O0] B[j+1][O]
00000000 150000000
00000000 0D000000O0
©0000000 00000000
J J

I Carnegie Melion [

15-745: Locality Analysis 11

D. Localized Iteration Space

Given finite cache, when does reuse result in locality?

Localized if accesses less data than effective cache size

for i = 0 to 2 for i = 0 to 2
for j =0 to 7 for j = 0 to 1000000
A[i][3] = B[3]1[0] + B[3+11[0]; A[i][3j] = B[3]1[0] + B[3+11[0];
00000000 ‘"oooo\00o0o0
B[j+1]1[0] ooo000O0OO0OO B[j+1][0] oooo??oooo
00000000 eoo0oo0o\00 00
J J
Localized: both i and j loops Localized: j loop only

Basis=[1],[0] Basis =
0 1

T carnegie Melion |
15-745: Locality Analysis 12

-]
Computing Locality

Reuse Vector Space N Localized Vector Space = Locality Vector Space

c | for i = 0 to 2
® Xxampie:
for § = 0 to N-2 /

A[i][3] = B[j1[0] + B[j+1]1[0];

 |f Nissmall, then both loops are localized:
0 1
IHEEH

— i.e., temporal reuse does result in temporal locality

1
0

— span{[é]}nspan{

_ 00000000
B[J+11[0] ooo0000OO0OO
00000000

I Carnegie Melion [

15-745: Locality Analysis 13

-]
Computing Locality

Reuse Vector Space N Localized Vector Space = Locality Vector Space

c | for i = 0 to 2
* Xxample:
for § = 0 to N-2 /

A[i][3] = B[j1[0] + B[j+1]1[0];

 |If Nislarge, then only the innermost loop is localized:

— span{

1
O]}mspan{

2]}:span{}

— i.e., no temporal locality

B[j+1][0] eoeoe@e@0f00@@®@
eoo0oo0\0000

J
I Carnegie Melion [

15-745: Locality Analysis 14

ioooo??oooo

Locality Analysis Summary

1. Find data reuse
— Temporal reuse: Compute the nullspace of H
— Spatial reuse: Compute the nullspace of H,, which is H with last row zeroed out
— If caches were infinitely large, we would be finished

2. Determine “localized iteration space”

— set of inner loops where the data accessed by an iteration is expected to fit
within the cache

3. Find data locality:

— reuse N localized iteration space = locality

I Carnegie Melion [

15-745: Locality Analysis 15

-
ll. Prefetching

Recall: Compiler Algorithm

Analysis: what to prefetch
* Locality Analysis

Scheduling: when/how to issue prefetches

* Loop Splitting
e Software Pipelining

I Carnegie Melion [

15-745: Prefetching Pointer Structures 16

Recall: Prefetch Predicate

Locality Type Miss Instance Predicate on Iteration Space
None Every lteration True
Temporal First Iteration i=0
Spatial Every L iterations (imodL)=0
(L elements/cache line)

Example: for i = 0 to 2
for 5 = 0 to N-2
A[i][j] = B[j]l[O0] + B[j+1][O0];

Reference Locality Predicate on Iteration Space
A[i] [3] iT _ [none .
[j] - [spaTial (jmodL)=0
B[j+1][0] il _ [temporal i=0
5] none =

I Carnegie Melion [

15-745: Prefetching Pointer Structures 17

-]
Recall: Loop Splitting for Prefetching Arrays

* Decompose loops to isolate cache miss instances
— cheaper than inserting IF(Prefetch Predicate) statements

Locality Type Predicate Loop Transformation
None True None
Temporal i=0 Peel loop i
Spatial (imodL)=0 Unroll loopi by L

(L elements/cache line)

Loop peeling: split any problematic first (or last) few iterations from the loop
& perform them outside of the loop body

190000000 00000000
0000000 00000000

0 000e0eo 0000000

J

15-745: Prefetching Pointer Structures 18

-
Recall: Example Code with Prefetching

Original Code

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i] [3] = B[j1[0] + B[j+1][0];

O Cache Hit
@® @ Cache Miss

A[i][]]

‘e@0000000
0000000
00000000

J
B[j+1] [0]

*0ooo000000
00000000
00000000

J

i

i>0 —

— prefetch (&B[0] [0]) ;
for (j =0; j < 6; J+=2) {
prefetch(&B[j+1] [0]) ;
prefetch (&B[j+2] [0]) ;
prefetch (&A[0][]3]) ;
}
for (J =0; j < 94; j += 2) {
prefetch (&B[j+7][0]) ;
prefetch (&B[j+8] [0]) ;
prefetch (&A[0] [j+6]) ;
A[O0][3j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (j = 94; j < 100; j += 2) {
A[0][3j] = B[3][0]1+B[3+1][0];
A[0][j+1] = B[3j+11[0]1+B[3j+2][0];
1}
— for (i =1; i < 3; i++) {
for (J =0; j< 6; j += 2)
prefetch (&A[i]l [j])
for (J =0; jJ < 94; j += 2) {
prefetch (&A[i] [j+6]) ;
A[i][j] = B[3J1[0] + B[j+1]1[0];
A[i] [3+1] = B[3j+1][0] + B[j+2][0];
}
for (j =
A[i] []3] =
A[i][j+1] =
}
}

94; j < 100; j += 2) {
B[j]1[0] + B[j+1][0];
B[j+1][0] + B[j+2][0];

I, carregie Melion [

15-745: Prefetching Pointer Structures

19

Today: Prefetching for Pointer-Based Structures

 Examples:
— linked lists, trees, graphs, ...
« A common method of building large data structures

— especially in non-numeric programs

* Cache miss behavior is a concern because:

— large data set with respect to the cache size
— temporal locality may be poor
— little spatial locality among consecutively-accessed nodes

Goal:
e Automatic compiler-based prefetching for pointer-based data structures

I Carnegie Melion [

15-745: Prefetching Pointer Structures 20

Scheduling Prefetches for Pointer-Based Data Structures

currently visiting want to prefetch
ip

p =&ng

while (p){ load *p here
work(p->data), ——
p = p<->next;

}

Our Goal: fully hide latency
— thus achieving fastest possible computation rate of 1/W

e e.g.,if L=3W, we must prefetch 3 nodes ahead to achieve this

I Carnegie Melion [

15-745: Prefetching Pointer Structures 21

Performance without Prefetching

Time

while (p){
work(p->data);

p = p->next;

computation rate =1/ (L+W)

I Carnegie Melion [

15-745: Prefetching Pointer Structures 22

Prefetching One Node Ahead

Time

while (p){
pf(p->next);

work(p->data);
p = p->next;

visiting

O-...

prefetch

pf(p;->next)

—> data dependence

. r6-6-6

 Computation is overlapped with memory accesses

computation rate = 1/L

I Carnegie Melion [

15-745: Prefetching Pointer Structures 23

Prefetching Three Nodes Ahead

while (p){
pf(p->next->next->next);

Time work(p->data);

P = p->next

“‘“ ®eoo

visiting

prefetch

P4
pf(p;->next->next->next)

e

Carnegie Mellon -
15-745: Prefetching Pointer Structures 24

Prefetching Three Nodes Ahead

q=p->next->next;
while(q) {

> pf(g=g->next);
work(p->data);
p = p->next;

Time

*
*
]

v

visiting

- L —»

prefetch

b 4
pf(g=g->next);

&6

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

* any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon -

15-745: Prefetching Pointer Structures 25

-
Our Goal: Fully Hide Latency

Time

while (p){
p(&niya);
work(p->data);
p = p->next;

visiting

prefetch
-

» achieves the fastest possible computation rate of 1/W

I Carnegie Melion [

15-745: Prefetching Pointer Structures 26

Overcoming the Pointer-Chasing Problem

Key:
* n;needs to know &n, 4 without referencing the d-1 intermediate nodes

Three Algorithms:

an existing pointer
* use existing pointer(s) in n, to approximate &n,,4
- —~9 9 o
— Greedy Prefetching g g

* add new pointer(s) to n, to approximate &n.,4

— History-Pointer Prefetching

* compute &n,,, directly from &n, (no ptr deref) i = A :]

— Data-Linearization Prefetching °—>' ® '—»@

15-745: Prefetching Pointer Structures 27

Greedy Prefetching

e Prefetch all neighboring nodes (simplified definition)
— only one will be followed by the immediate control flow
— hopefully, we will visit other neighbors later

preorder (treeNode * t) {
if (t '= NULL){
pf (t->left) ;
pf (t->right) ;
process (t->data) ;
preorder (t->left) ;
preorder (t->right) ;

 Reasonably effective in practice
* However, little control over the prefetching distance

I Carnegie Melion [

15-745: Prefetching Pointer Structures 28

History-Pointer Prefetching

* Add new pointer(s) to each node
— history-pointers are obtained from some recent traversal

= o

e OO WERFRL P, UlIlOOO PN

\J
preorder

| o e
e @X1SEING hiStory-pointer
!\JW\NB'— history-pointer being added

* Trade space & time for better control over prefetching distances

Carnegie Mellon -

15-745: Prefetching Pointer Structures 29

Data-Linearization Prefetching

* No pointer dereferences are required
 Map nodes close in the traversal to contiguous memory

preorder
traversal

prefetching distance= 3 nodes » prefetch

I Carnegie Melion [

15-745: Prefetching Pointer Structures 30

Summary of Prefetching Algorithms for Pointer Structures

Greedy History-Pointer Data-Linearization

Control over Prefetching
Distance

Applicability to Pointer-
Based Data Structures ;

Overhead in Preparing
Prefetch Addresses

Ease of Implementation

I Carnegie Melion [

15-745: Prefetching Pointer Structures 31

Summary of Prefetching Algorithms for Pointer Structures

Greedy History-Pointer Data-Linearization
Control over Prefetching little more precise more precise
Distance
Applicability to Pointer- any revisited; changes must have a major
Based Data Structures only slowly traversal order; changes

only slowly
Overhead in Preparing none space + time space if done as shadow
Prefetch Addresses structure
Ease of Implementation relatively more difficult more difficulty
straightforward

* Greedy prefetching is the most widely applicable algorithm

I Carnegie Melion [

15-745: Prefetching Pointer Structures 32

Today’s Class: Locality Analysis and Prefetching

. Locality Analysis
A. Temporal
B. Spatial
C. Group
D. Localized Iteration Space

Il. Prefetching Pointer-Based Structures

Friday’s Class

* Register Allocation: Coalescing

T carnegie Melton [
15-745: Locality Analysis and Prefetching 33

