
Carnegie Mellon

Lecture 23

Register Allocation: Coalescing

Phillip B. Gibbons 15-745: Register Coalescing 1

I. Motivation

II. Coalescing Overview

III. Algorithms:
• Simple & Safe Algorithm

• Briggs’ Algorithm

• George’s Algorithm

Carnegie Mellon

Review: Register Allocation without Spilling

• Problems:

– Given n registers in a machine, is spilling avoided?

– Find an assignment for all pseudo-registers, whenever possible.

• Solution:

– Abstraction: an interference graph

• nodes: live ranges

• edges: presence of live range at time of definition

– Register Allocation and Assignment problems

• equivalent to n-colorability of interference graph

➔ NP-complete

– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment

• not successful: colorability unknown & no assignment

15-745: Register Coalescing 2

Carnegie Mellon

Review: Coloring Heuristic

• Algorithm:

– Iterate until stuck or done

• Pick any node with degree < n and add to stack

• Remove the node and its edges from the graph

– If done (no nodes left)

• Use stack to reverse process and add colors

• Avoids making arbitrary decisions that make coloring fail (e.g., B, A, D different colors)

15-745: Register Coalescing 3

B

CE A

D B

C

D

E
B

CE A

D

A

x

x

x

x

n=3

Carnegie Mellon

Must
merge

15-745: Register Coalescing 4

Review: Computing Live Ranges

A = ... (A1)
IF A goto L1

L1: C = ... (C1)
= A

D = ... (D2)
= D + C

B = ... (B1)
= A

D = … (D1)
= B + D

A = 2 (A2)

= A

ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{B,D} {A1,B1,D1}
{D} {A1,B1,D1}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{C,D} {A1,C1,D2}
{D} {A1,C1,D2}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Variable v is live at point p if
the value of v is used on some
path starting at p

Overlapping live ranges
for the same variable

must be merged

live
range
for B

Carnegie Mellon

Review: Register Allocation with Spilling

• A pseudo-register is

– Colored successfully: allocated a hardware register

– Not colored: left in memory

• Objective function

– Cost of an uncolored node:

• proportional to number of uses/definitions (dynamically)

• one estimate = (# defs & uses)*10loop-nest-depth

• Objective: minimize sum of cost of uncolored nodes

• Heuristics

– Benefit of spilling a pseudo-register:

• increases colorability of pseudo-registers it interferes with

• can approximate by its degree in interference graph

– Greedy heuristic

• spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is
necessary

15-745: Register Coalescing 5

Carnegie Mellon

Review: Live-Range Splitting

• Observation: spilling is absolutely necessary if

– number of live ranges active at a program point > n

• Apply live-range splitting before coloring

– Identify a point where number of live ranges > n

– Among those live ranges, choose the one with the
largest inactive region

– Split the inactive region from the live range

– Repeat as needed

15-745: Register Coalescing 6

k = k + 1

j = j + 1

i = i + 1

= x

x =

n=3

split & spill x,
then can
color rest

x

k i

j

x

k i

j

x Spill cost?

Store x

Load x

2

Carnegie Mellon

I. Register Coalescing Motivation: Copy Instructions

• Two optimizations that help optimize away copy instructions:

– Copy Propagation

– Dead Code Elimination

• Can all copy instructions be eliminated using this pair of optimizations?

15-745: Register Coalescing 7

X = A + B

…

Y = X

…

Z = Y + 4

X = A + B

…

Y = X;

…

Z = X + 4

1. Copy Propagation

2. Dead Code
Elimination

// deleted

Carnegie Mellon

Example Where Copy Propagation Fails

• Use of copy target has multiple (conflicting) reaching definitions

15-745: Register Coalescing 8

X = A + B

Y = C

Y = X

Z = Y + 4

Carnegie Mellon

Another Example Where the Copy Instruction Remains

• Copy target (Y) still live even after some successful copy propagations

• Bottom line:

– copy instructions may still exist at the time register allocation is performed

15-745: Register Coalescing 9

X = A + B

Y = X

Z = Y + 4

Y = …

C = Y + D

Can substitute X for Y here

But not here (conflicting
reaching defs)

Carnegie Mellon

II. Coalescing: Overview

• What clever thing might the register allocator do for copy instructions?

• If we can assign both the source and target of the copy to the same register:

– then we don’t need to perform the copy instruction at all!

– the copy instruction can be removed from the code

• even though the optimizer was unable to do this earlier

• One way to do this:

– treat the copy source and target as the same node in the interference graph

• then the coloring algorithm will naturally assign them to the same register

– this is called “coalescing”

15-745: Register Coalescing 10

…

Y = X

…

…

r7 = r7

…

Carnegie Mellon

B

Simple Example: Without Coalescing

• Without coalescing, X and Y can end up in different registers

– cannot eliminate the copy instruction

15-745: Register Coalescing 11

X = …

A = 5

Y = X

B = A + 2

Z = Y + B

return Z

X Y

Valid coloring with 3 registers

A ZA Z

X Y

B

Carnegie Mellon

B

Example Revisited: With Coalescing

• With coalescing, X and Y are now guaranteed to end up in the same register

– the copy instruction can now be eliminated

• Great! So should we go ahead and do this for every copy instruction?

15-745: Register Coalescing 12

X = …

A = 5

Y = X

B = A + 2

Z = Y + B

return Z

X/Y

Valid coloring with 3 registers

A ZA Z

B

X/Y

Carnegie Mellon

Should We Coalesce X and Y In This Case?

• It is legal to coalesce X and Y for a “Y = X” copy instruction if:

– the live ranges of X and Y do not overlap

• But just because it is legal doesn’t mean that it is a good idea…

15-745: Register Coalescing 13

X = A + B

Y = X

X = 2

Z = Y + X

No! That would result
in incorrect behavior if
this branch is taken.

Carnegie Mellon

Why Coalescing May Be Undesirable, Even If Legal

• What is the likely impact of coalescing X and Y on:

– live range size(s)?

• recall our discussion of live range splitting

– colorability of the interference graph?

• Fundamentally, coalescing adds further constraints to the coloring problem

– doesn’t make coloring easier; may make it more difficult

• If we coalesce in this case, we may:

– save a copy instruction, BUT

– cause significant spilling overhead if we can no longer color the graph

15-745: Register Coalescing 14

X = A + B

…

Y = X // last use of X

…

Z = Y + 4

// 100 instructions

// 100 instructions

Carnegie Mellon

Legal to Coalesce X and Y?

• It is legal to coalesce X and Y for a “Y = X” copy instruction if:

– the live ranges of X and Y do not overlap

15-745: Register Coalescing 15

X = A + B X = 2

Y = X

Z = Y + 2

if (…)

yes

X = A + B

Y = X

Z = Y + X

Not by our (conservative) rule:
live ranges overlap

But actually would be ok
in this case to use same

register for X and Y

Carnegie Mellon

When to Coalesce

• Goal when coalescing is legal:

– coalesce unless it would make a colorable graph non-colorable

• The bad news:

– predicting colorability is tricky!

• it depends on the shape of the graph

• graph coloring is NP-hard

• Example: assuming 2 registers, should we coalesce X and Y?

15-745: Register Coalescing 16

B

X/Y

A D

C

2-colorable

B

X Y

A D

CB

X Y

A D

C

Not 2-colorable

B C

???

Carnegie Mellon

Representing Coalescing Candidates in the Interference Graph

• To decide whether to coalesce, we augment the interference graph

• Coalescing candidates are represented by a new type of interference graph edge:

– dotted lines: coalescing candidates

• try to assign vertices the same color

– (unless that is problematic, in which case they can be given different colors)

– solid lines: interference (i.e., live ranges overlap)

• vertices must be assigned different colors

15-745: Register Coalescing 17

B

X = …

A = 5

Y = X

B = A + 2

Z = Y + B

return Z

X Y

A Z

Carnegie Mellon

How Do We Know When Coalescing Will Not Cause Spilling?

• Key insight:

– Recall from the coloring algorithm:

• we can always successfully N-color a node if its degree is < N

• To ensure that coalescing does not cause spilling:

– check that the degree < N invariant is still locally preserved after coalescing

• if so, then coalescing won’t cause the graph to become non-colorable

• Note:

– We do NOT need to determine whether the full graph is colorable or not

– Just need to check that coalescing does not cause a colorable graph to
become non-colorable

15-745: Register Coalescing 18

Carnegie Mellon

III. Algorithms

• Simple and Safe Algorithm

• Briggs’ Algorithm

• George’s Algorithm

15-745: Register Coalescing 19

Carnegie Mellon

Simple and Safe Coalescing Algorithm

• We can safely coalesce nodes X and Y with a coalescing edge if (|X| + |Y|) < N

– Note: |X| = degree of node X counting only interference (not coalescing) edges

• Example:

– if N >= 4, it would always be safe to coalesce these two nodes

• this cannot cause new spilling that would not have occurred with the original graph

– if N < 4, it is unclear

How can we (safely) be more aggressive than this?

15-745: Register Coalescing 20

X Y (|X| + |Y|) = (1 + 2) = 3

X/Y Degree of coalesced node
can be no larger than 3

Carnegie Mellon

What About This Example?

• Assume N = 3

• Is it safe to coalesce X and Y?

• Note: X and Y share a common (interference) neighbor: node A

– hence the degree of the coalesced X/Y node is actually 2 (not 3)

– therefore coalescing X and Y is guaranteed to be safe when N = 3

• How can we adjust the algorithm to capture this?

15-745: Register Coalescing 21

B

X Y

A Z

(|X| + |Y|) = (1 + 2) = 3

(Not less than N)

Carnegie Mellon

Another Helpful Insight

• Colors are not assigned until nodes are popped off the stack

– nodes with degree < N are pushed on the stack first

– when a node is popped off the stack, we know that it can be colored

• because the number of potentially conflicting neighbors must be < N

• Spilling only occurs if there is no node with degree < N to push on the stack

• Example: (N=2)

15-745: Register Coalescing 22

F

X Y
C

G

A

B

D
E

H

I
J |X| = 5

|Y| = 5

2-colorable after
coalescing X and Y?

Yes: X/Y gets 1 color,
A-J get 1 color

Carnegie Mellon

Building on This Insight

• When would coalescing cause the stack pushing (aka “simplification”) to get stuck?

1. coalesced node must have a degree >= N

• otherwise, it can be pushed on the stack, and we are not stuck

2. AND it must have at least N neighbors that each have a degree >= N

• otherwise, all neighbors with degree < N can be pushed before this node

– reducing this node’s degree below N (and therefore we aren’t stuck)

• To coalesce more aggressively (and safely), let’s exploit this second requirement

– which involves looking at the degree of a coalescing candidate’s neighbors

• not just the degree of the coalescing candidates themselves

15-745: Register Coalescing 23

Carnegie Mellon

Briggs’ Algorithm

• Nodes X and Y (with a coalescing edge) can be coalesced if:

– (number of neighbors of X/Y with degree >= N) < N

• Works because:

– all other neighbors can be pushed on the stack before this node,

– and then its degree is < N, so then it can be pushed

• Example: (N = 2)

15-745: Register Coalescing 24

B

X Y

A Z

B

X/Y

A Z

Z

A

B

X/Y

Carnegie Mellon

Briggs’ Algorithm

• Nodes X and Y can be coalesced if:

– (number of neighbors of X/Y with degree >= N) < N

• More extreme example: (N = 2)

15-745: Register Coalescing 25

A

B

C

D

F

X Y
C

G

A

B

D
E

H

I
J

E

F

G

H

I

J

X/Y

Carnegie Mellon

George’s Algorithm

Motivation:

• imagine that X has a very high degree, but Y has a much smaller degree

– (perhaps because X has a large live range)

• With Briggs’ algorithm, we would inspect all neighbors of both X and Y

– but X has a lot of neighbors!

• Can we get away with just inspecting the neighbors of Y?

– while showing that coalescing makes coloring no worse than it was given X?

15-745: Register Coalescing 26

A

Y

B

X

Carnegie Mellon

George’s Algorithm

• Coalescing X and Y does no harm if:

– foreach neighbor T of Y, either:

1. degree of T is <N, or

2. T interferes with X

• Example: (N=2)

15-745: Register Coalescing 27

A

Y

B

X

 similar to Briggs: T will be pushed before X/Y

 hence no change compared with coloring X

A

B

Carnegie Mellon

Summary

• Coalescing can enable register allocation to eliminate copy instructions

– if both source and target of copy can be allocated to the same register

• However, coalescing must be applied with care to avoid causing register spilling

• Augment the interference graph:

– dotted lines for coalescing candidate edges

– try to allocate to same register, unless this may cause spilling

• Three Coalescing Algorithms:

– Simplest: based solely on degree of coalescing candidate nodes (X and Y)

– Briggs’ algorithm

• look at degree of neighboring nodes of X and Y

– George’s algorithm

• asymmetrical: look at neighbors of lower degree node Y
(examine degree and interference with X)

15-745: Register Coalescing 28

Carnegie Mellon

Today’s Class

2915-745: Register Coalescing

Monday’s Class

• Domain Specific Languages

Wednesday Midnight

• Project Milestone reports due

