
Carnegie Mellon

Lecture 24

Domain Specific Languages

I. Overview

II. Delite

III. Halide

Phillip B. Gibbons 15-745: Domain Specific Languages 1

Carnegie Mellon

I. Overview: What are Domain Specific Languages (DSLs)?

15-745: DSL 2

Languages designed to close the abstraction gap
between a problem domain and the code to express the solution

Carnegie Mellon

Some Popular DSLs

15-745: DSL 3

What was the first DSL you ever used?

Carnegie Mellon

Some More Recent DSLs

• MapReduce for big data processing

• Halide for image processing

• GraphLab [CMU] / Pregel for graph processing

– “Think like a vertex”

• Ligra [CMU] for shared memory graph processing

– edgeMap & vertexMap

• Tensor Flow for deep neural networks

15-745: DSL 4

Carnegie Mellon

MapReduce

• Popularized by Google

• Open source implementation called Hadoop MapReduce

Image from: developer.yahoo.com/hadoop/tutorial/module4.html

Carnegie Mellon

GraphLab

Graph Parallel: “Think like a vertex”

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

Slide courtesy of Carlos Guestrin

Carnegie Mellon

Advantages/Goals of DSLs

• Offer pre-defined abstractions to represent concepts from the
application domain

– Programming accessibility

• Domain experts can readily write effective programs

• More clear and intuitive

– Programmer productivity

• Fewer lines of code

• Domain-specific tool support

• DSL compilers optimize the code written for the specific domain

– High-performance

• Higher-level (often declarative) abstraction and restrictive language constructs
enable more optimizations

– Portability

• Across a range of hardware platforms

15-745: DSL 7

Carnegie Mellon

Design Guidelines for Domain Specific Languages

• Language Purpose

1. Identify language uses early

2. Ask questions

3. Make your language consistent

• Language Realization

4. Decide carefully whether to use graphical or textual realization

5. Compose existing languages where possible

6. Reuse existing language definitions

7. Reuse existing type systems

• Language Content

8. Reflect only the necessary domain concepts

9. Keep it simple

15-745: DSL 8

[Karsai et al, DSM’09]

Carnegie Mellon

Design Guidelines for Domain Specific Languages

• Language Content (cont.)

10. Avoid unnecessary generality

11. Limit the number of language elements

12. Avoid conceptual redundancy

13. Avoid inefficient language elements

• Concrete Syntax

14. Adopt existing notations domain experts use

15. Use descriptive notations

16. Make elements distinguishable

17. Use syntactic sugar appropriately

18. Permit comments

19. Provide organizational structures for models

20. Balance compactness and comprehensibility

15-745: DSL 9

Carnegie Mellon

Design Guidelines for Domain Specific Languages

• Concrete Syntax (cont.)

21. Use the same style everywhere

22. Identify usage conventions

• Abstract Syntax

23. Align abstract and concrete syntax

24. Prefer layout which does not affect translation from concrete to abstract syntax

25. Enable modularity

26. Introduce interfaces

15-745: DSL 10

Carnegie Mellon

II. Delite

11

[Brown et al., PACT’11]

Compilers have
often not kept pace

Carnegie Mellon

12

Carnegie Mellon

13

Carnegie Mellon

14

Carnegie Mellon

15

Need to simplify the process of developing DSLs for parallelism
• Delite provides a framework for creating heterogeneous parallel DSLs
• Performs generic, parallel, and domain-specific optimizations in a single system

Carnegie Mellon

16

Carnegie Mellon

17

Carnegie Mellon

18

Carnegie Mellon

19

Carnegie Mellon

20

OptiML+Delite outperforms MATLAB

Carnegie Mellon

III. Halide
• Open-source DSL for the complex image processing pipelines

found in modern computational photography and vision applications

• A systematic model of the tradeoffs between locality, parallelism, and redundant
recomputation in stencil pipelines;

• a scheduling representation that spans this space of choices;

• a DSL compiler based on this representation that combines Halide programs and
schedule descriptions to synthesize points anywhere in this space, using a design
where the choices for how to execute a program are separated not just from the
definition of what to compute, but are pulled all the way outside the black box of
the compiler;

• a loop synthesizer for data parallel pipelines based on simple interval analysis,
which is simpler and less expressive than polyhedral model, but more general in
the class of expressions it can analyze;

• a code generator that produces high quality vector code for image processing
pipelines, using machinery much simpler than the polyhedral model;

• an autotuner that can infer high performance schedules—up to 5 faster than
hand-optimized programs written by experts—for complex image processing
pipelines using stochastic search.

15-745: DSL 21

[Ragan-Kelly et al., PLDI’13]

We are surrounded by computational cameras

Methodology Prior to Halide

A simple example: 3x3 blur

Halide’s answer: decouple algorithm from schedule

The algorithm defines pipelines as pure functions

Domain scope
of the programming model

Parallelism vs. Locality

Interleaved execution (fusion) improves locality

Stencils have overlapping dependencies

blury

blurx

input
… …

Decoupled tiles optimize parallelism & locality

Breaking dependencies introduces redundant work

Stencil pipelines require tradeoffs

determined by organization of computation

blur_x.compute_root(); blur_x.compute_at(blur_y, x); blur_x.store_root().compute_at(blur_y, x);

blur_x.compute_at(blur_y, x)
.vectorize(x, 4);

blur_y.tile(x, y, xi, yi, 8, 8)
.parallel(y)
.vectorize(xi, 4);

blur_x.store_root()
.compute_at(blur_y, y)
.split(x, x, xi, 8)
.vectorize(xi, 4).parallel(x);

blur_y.split(x, x, xi, 8)
.vectorize(xi, 4).parallel(x);

blur_x.store_at(blur_y, y)
.compute_at(blur_y, yi)
.vectorize(x, 4);

blur_y.split(y, y, yi, 8)
.vectorize(x, 4)
.parallel(y);

37

Halide’s Autotuner Stochastically Searches

for High-Performance Code

Carnegie Mellon

Today’s Class: Domain Specific Languages

4015-745: DSL

I. Overview
• Programmer accessibility & productivity
• Program performance & portability

II. Delite
• Framework for creating heterogeneous parallel DSLs

III. Halide
• DSL for image processing pipelines

Carnegie Mellon

4115-745: DSL

Coming Attractions

• No more lectures!

• Wednesday 4/10: Project Milestone Report due midnight

• Penguins defeat Islanders in game 1 of NHL playoffs

• Friday 4/12: Exam topics posted on Piazza

• Penguins defeat Islanders again

• Monday 4/15: Day of Project discussions

• Taxes due – Wait…what happened to my refund?

• Friday 4/19: In-class Exam

• Penguins move on to face the Capitals

