
Carnegie Mellon

Lecture 5

Introduction to Data Flow Analysis

I. Structure of data flow analysis

II. Example 1: Reaching definition analysis

III. Example 2: Liveness analysis

IV. Framework

Phillip B. Gibbons 15-745: Intro to Data Flow 1

Carnegie Mellon

What is This?

15-745: Intro to Data Flow 2

Schedule of Lectures
Has Been Updated

Course Dependence Graph

Carnegie Mellon

Review: Expression DAG

Example 1:

• grammar (for bottom-up parsing): E -> E + T | E – T | T, T -> T*F | F, F -> (E) | id

• expression: a+a*(b-c)+(b-c)*d

15-745: Intro to Data Flow 3

1.a

2.a

3.b 4.c

5.-

6.*

7.+

8.b 9.c

10.- 11.d

12.*

13.+

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*

9.+

Parse tree Expression DAG

Carnegie Mellon

Review: Value Numbering

a = b+c

b = a-d

c = b+c

d = a-d

15-745: Intro to Data Flow 4

b c

+

-

1 d

2

+ 3

t1 = b + c

a = t1

t2 = t1 - d

b = t2

t3 = t2 + c

c = t3

d = t2

Data structure:

VALUES = Table of

expression /* [OP, valnum1, valnum2] */

var /* name of variable currently holding expr */

var2value() /* variable’s current value number */

Carnegie Mellon

What is Data Flow Analysis?

• Local analysis (e.g. value numbering)

– analyze effect of each instruction

– compose effects of instructions to derive information
from beginning of basic block to each instruction

• Data flow analysis

– analyze effect of each basic block

– compose effects of basic blocks to derive information at basic block
boundaries

– from basic block boundaries, apply local technique to generate information on
instructions

15-745: Intro to Data Flow 5

[ALSU 9.2]

Carnegie Mellon

What is Data Flow Analysis? (Cont.)

• Data flow analysis:

– Flow-sensitive: sensitive to the control flow in a function

– Intraprocedural analysis

• Examples of optimizations:

– Constant propagation

– Common subexpression elimination

– Dead code elimination

15-745: Intro to Data Flow 6

For each variable x, determine:

Value of x?

Which “definition” defines x?

Is the definition still meaningful (live)?

e = b + c a = 243

e = d+3

g = a

a = b + c

d = 7

Carnegie Mellon

Static Program vs. Dynamic Execution

• Statically: Finite program

• Dynamically: Can have infinitely many possible execution paths

• Data flow analysis abstraction:

– For each point in the program:
combines information of all the instances of the same program point.

• Example of a data flow question:

– Which definition defines the value used in statement “b = a”?

15-745: Intro to Data Flow 7

a = 10

a = 11

if input()

b = a

exit

B1

B2

B3

Carnegie Mellon

Effects of a Basic Block

• Effect of a statement: a = b+c

• Uses source variables (b and c)

• Kills an old definition (old definition of a)

• Defines a new definition (a)

• Compose effects of statements -> Effect of a basic block

• A locally exposed use in a b.b. is a use of a data item that is not preceded in the b.b. by
a definition of the data item.

• Any definition of a data item in the b.b. kills all other definitions of the same data item.

• A locally available definition = last definition of data item in b.b.

15-745: Intro to Data Flow 8

t1 = r1+r2

r2 = t1

t2 = r2+r1

r1 = t2

t3 = r1*r1

r2 = t3

if r2>100 goto L1

locally exposed uses?

kills any definitions?

locally available definition?

r1

t2

Any other
defn of t2
in program

Carnegie Mellon

d0: y = 3

d1: x = 10

d2: y = 11

if e

II. Reaching Definitions

• Every assignment is a definition

• A definition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

• Problem statement

– For each point in the program, determine if each definition in the program
reaches the point

– A bit vector per program point, vector-length = #defs

15-745: Intro to Data Flow 9

d3: x = x+1

d4: y = y+4

d5: x = 4

d6: z = x

B1

B2 B3 yes

yes

yes

no

no

no

d1 reaches
this point?

ALSU 9.2.4

Carnegie Mellon

d0: y = 3

d1: x = 10

d2: y = 11

if e

Reaching Definitions

• Every assignment is a definition

• A definition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

• Problem statement

– For each point in the program, determine if each definition in the program
reaches the point

– A bit vector per program point, vector-length = #defs

15-745: Intro to Data Flow 10

d3: x = x+1

d4: y = y+4

d5: x = 4

d6: z = x

B1

B2 B3 yes

yes

yes

yes

yes

d2 reaches
this point?

no

Carnegie Mellon

Reaching Definitions: Another Example

15-745: Intro to Data Flow 11

L1: if input() GOTO L2

d0: a = x

L2: … d1: b = a

d2: a = y

GOTO L1

d2 reaches
this point?

yes

Carnegie Mellon

f1

Data Flow Analysis Schema

• Build a flow graph (nodes = basic blocks, edges = control flow)

• Set up a set of equations between in[b] and out[b] for all basic blocks b

– Effect of code in basic block:

• Transfer function fb relates in[b] and out[b], for same b

– Effect of flow of control:

• relates out[b], in[b’] if b and b’ are adjacent

• Find a solution to the equations

15-745: Intro to Data Flow 12

f2

out[entry]
entry

exit

f3

in[B1]

out[B1]

in[B2]

out[B2]

in[B3]

out[B3]

in[exit]

B2 B3

B1 forward
analysis

Carnegie Mellon

Effects of a Statement

• fs : A transfer function of a statement

– abstracts the execution with respect to the problem of interest

• Consider Reaching Definitions. For a statement s (e.g., d: x = y + z):
out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

– Gen[s]: definitions generated: Gen[s] = {d}

– Propagated definitions: in[s] - Kill[s],
where Kill[s]=set of all other defs to x in the rest of program

15-745: Intro to Data Flow 13

d1: x = 10

d0: y = 3

in[B1]

d2: y = 11

out[B1]

fd0

fd1

fd2

Carnegie Mellon

Effects of a Basic Block

• Transfer function of a statement s:

• out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

• Transfer function of a basic block B:

• Composition of transfer functions of statements in B

• out[B] = fB(in[B]) = fd2fd1fd0(in[B])

= Gen[d2] U ((Gen[d1] U ((Gen[d0] U (in[B]-Kill[d0]))-Kill[d1])) - Kill[d2])

= Gen[d2] U (Gen[d1] U (Gen[d0] - Kill[d1]) - Kill[d2]) U
(in[B] - (Kill[d0] U Kill[d1] U Kill[d2]))

= Gen[B] U (in[B] - Kill[B])

• Gen[B]: locally available definitions (defined locally & reaches end of bb)
• Kill[B]: set of definitions killed by B

15-745: Intro to Data Flow 14

d1: x = 10

d0: y = 3
in[B1]

d2: y = 11
out[B1]

fd0

fd1

fd2

fB = fd2fd1fd0

Carnegie Mellon

Reaching Definitions Example

• transfer function fb of a basic block b: OUT[b] = fb(IN[b])
incoming reaching definitions -> outgoing reaching definitions

• A basic block b

• generates definitions: Gen[b],

– set of definitions in b that reach end of b

• kills definitions: in[b] - Kill[b],
where Kill[b]=set of defs killed by defs in b

• out[b] = Gen[b] U (in(b)-Kill[b])

15-745: Intro to Data Flow 15

d3: x = x+1

d4: y = y+4

d5: x = 4

d6: z = x

d0: y = 3

d1: x = 10

d2: y = 11

if e

B1

B2 B3

f Gen Kill

1 {1,2}

2 {3,4}

3 {5,6}

{0,2,3,4,5}

{0,1,2,5}

{1,3}

Subtlety: d0 & d2
kill each other, but

d2 is still generated

Carnegie Mellon

Effects of the Edges (acyclic)

• out[b] = fb(in[b])

• Join node: a node with multiple predecessors

• meet operator:

in[b] = out[p1] U out[p2] U ... U out[pn], where

p1, ..., pn are all the predecessors of b

15-745: Intro to Data Flow 16

f2

f1

out[entry]
entry

exit

f3

in[B1]

out[B1]

in[B2]

out[B2]

in[B3]

out[B3]

in[exit]

in[exit] = out[B2] U out[B3]

Carnegie Mellon

Cyclic Graphs

• Equations still hold

• out[b] = fb(in[b])

• in[b] = out[p1] U out[p2] U ... U out[pn], p1, ..., pn pred.

• Find: fixed point solution

15-745: Intro to Data Flow 17

d1: a = 10

d2: a = 11

if e

in[2]

in[3]

out[3]

out[2]
exit

in[exit]

in[1]

out[1]

out[entry]

entry

in[B2] = out[B1] U out[B3]

Carnegie Mellon

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition

out[Entry] = 

// Initialization for iterative algorithm

For each basic block B other than Entry

out[B] = 

// iterate

While (changes to any out[] occur) {

For each basic block B other than Entry {

in[B] = U(out[p]), for all predecessors p of B

out[B] = fB(in[B]) // out[B]=gen[B] U(in[B]-kill[B])

}

15-745: Intro to Data Flow 18

Carnegie Mellon

Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize

out[Entry] =  // could set out[Entry] to special def

// if reaching then undefined use

For all nodes i

out[i] =  // could optimize by out[i]=gen[i]

ChangedNodes = N

// iterate

While ChangedNodes ≠  {

Remove i from ChangedNodes

in[i] = U(out[p]), for all predecessors p of i
oldout = out[i]

out[i] = fi(in[i]) // out[i]=gen[i] U(in[i]-kill[i])
if (oldout ≠ out[i]) {

for all successors s of i

add s to ChangedNodes

}

}

15-745: Intro to Data Flow 19

Carnegie Mellon

Reaching Definitions Example

15-745: Intro to Data Flow 20

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

B1

B2

B3

B4

exit

entry

000 00 0 0

First Pass

IN[B1]

Second Pass

111 00 0 0OUT[B1]

IN[B2]

OUT[B2]

IN[B3]

OUT[B3]

IN[B4]

OUT[B4]

IN[exit]

111 00 0 0

001 11 0 0

001 11 0 0

000 11 1 0

001 11 1 0

001 01 1 1

001 01 1 1

000 00 0 0

111 00 0 0

111 01 1 1

001 11 1 0

001 11 1 0

000 11 1 0

001 11 1 0

001 01 1 1

001 01 1 1
Fixed point!

IN[b] = U(OUT[pred(b)])

OUT[b] = Gen[b] U
(IN(b)-Kill[b])

Init: OUT[b]=

Carnegie Mellon

A valid solution to Reaching Definitions?

• Is the solution a fixed point?

• Will the worklist algorithm generate this answer?

• What if add control flow edge shown in red?

15-745: Intro to Data Flow 21

exit

entry

d1: b = 1

in[2]={d1}

out[2]={d1}

in[exit]

in[1]={}

out[1]={}

out[entry]={}

in[3]={d1}

out[3]={d1}

Fixed point:
another iteration
of algorithm
won’t change
in/out values

no

yes

yes noIs it valid?

Carnegie Mellon

• Definition

– A variable v is live at point p if

• the value of v is used along some path in the flow graph starting at p.

– Otherwise, the variable is dead.

• Motivation

• e.g. register allocation

for i = 0 to n

… i …

…

for i = 0 to n

… i …

• Problem statement

– For each basic block

• determine if each variable is live in each basic block

– Size of bit vector: one bit for each variable

d0: v = 3

d1: x = 10

d2: y = 1

if e

III. Live Variable Analysis

15-745: Intro to Data Flow 22

y = 2

v = 2

z = x

y = v

no

yes

yes
v live at

this point?

Carnegie Mellon

Live Variables: Effects of a Basic Block (Transfer Function)

• Insight: Trace uses backwards to the definitions

• A basic block b can

• generate live variables: Use[b]

– set of locally exposed uses in b

• propagate incoming live variables: OUT[b] - Def[b],

– where Def[b]= set of variables defined in b.b.

• transfer function for block b:
in[b] = Use[b] U (out[b]-Def[b])

15-745: Intro to Data Flow 23

IN[b] =

control flow

use

an execution path

def

def

example

d5: c = a

d6: a = 4

d4: d = 1

IN[b]

OUT[b]

fb

= fb(OUT[b])

{a} U (OUT[b] – {a,c,d})

backward
analysis

Carnegie Mellon

Flow Graph

• in[b] = fb(out[b])

• Join node: a node with multiple successors

• meet operator:

out[b] = in[s1] U in[s2] U ... U in[sn], where

s1, ..., sn are all successors of b

15-745: Intro to Data Flow 24

f Use Def

1

2

3

a = 1

c = b

b = 1

a = 0

out[entry]
entry

exit

d = a

b = d

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

in[exit]

{} {a,b}

{b} {a,c}

{a} {b,d}

Carnegie Mellon

Live Variables: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition

in[Exit] = 

// Initialization for iterative algorithm

For each basic block B other than Exit

in[B] = 

// iterate

While (changes to any in[] occur) {

For each basic block B other than Exit {

out[B] = U(in[s]), for all successors s of B

in[B] = fB(out[B]) // in[B]=Use[B] U(out[B]-Def[B])

}

15-745: Intro to Data Flow 25

Carnegie Mellon

Live Variables Example

15-745: Intro to Data Flow 26

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

B1

B2

B3

B4

exit

entry
First Pass

IN[B1]

Second Pass

OUT[B1]

IN[B2]

OUT[B2]

IN[B3]

OUT[B3]

IN[B4]

OUT[B4] {}

OUT[entry]

{u3}

{u3}

{u2,u3}

{u2,u3}

{i,j,u2,u3}

{i,j,u2,u3}

{m,n,u1,u2,u3}

{m,n,u1,u2,u3}

{i,j,u2,u3}

{j,u2,u3}

{j,u2,u3}

{j,u2,u3}

{j,u2,u3}

{i,j,u2,u3}

{i,j,u2,u3}

{m,n,u1,u2,u3}

{m,n,u1,u2,u3}
IN[b] = Use[b] U
(OUT(b)-Def[b])

Init: IN[b]=

OUT[b] = U (IN[succ(b)])

Fixed point!

Carnegie Mellon

IV. Framework

Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] =  out[pred(b)]

backward:
in[b] = fb(out[b])
out[b] =  in[succ(b)]

Transfer function fb(x) = Genb  (x –Killb) fb(x) = Useb  (x -Defb)

Meet Operation ()  

Boundary Condition out[entry] =  in[exit] = 

Initial interior points out[b] =  in[b] = 

15-745: Intro to Data Flow 27

Other Data Flow Analysis problems fit into this general framework,
e.g., Available Expressions [ALSU 9.2.6]

Carnegie Mellon

Key Questions
• Correctness

• equations are satisfied, if the analysis algorithm terminates.

• Precision: how good is the answer?

• is the answer ONLY a union of all possible executions?

• Convergence: will the analysis terminate?

• or, could there always be some nodes that change?

• Speed: how fast is the convergence?

• how many times will we visit each node?

15-745: Intro to Data Flow 28

lecture

Friday

Carnegie Mellon

Today’s Class

• Foundations of Data Flow Analysis
– ALSU 9.3

15-745: Intro to Data Flow 29

I. Structure of data flow analysis

II. Example 1: Reaching definition analysis

III. Example 2: Liveness analysis

IV. Framework

Monday’s Class

