Lecture 5

Introduction to Data Flow Analysis

|. Structure of data flow analysis
II. Example 1: Reaching definition analysis
Ill. Example 2: Liveness analysis

IV. Framework

Phillip B. Gibbons 15-745: Intro to Data Flow 1

-
What is This?

~ Course Dependence Graph

Schedule of Lectures
Has Been Updated

Review: Expression DAG

Example 1:
» grammar (for bottom-up parsing): E->E+T|E-T|T, T->T*F|F, F->(E) | id
* expression: a+a* (b-c)+ (b-c)*d

T / \

.+ 12.*

/\ /NN N\

¥ 10.- 11.4d

VANVAYEEECIanS
SR 3

3. 4.c

1.

Parse tree Expression DAG

Carnegie Mellon -

15-745: Intro to Data Flow 3

Review: Value Numbering

Data structure:
VALUES = Table of

expression /* [OP, valnuml, valnum2] */
var /* name of variable currently holding expr */
var2value () /* variable’s current value number */
®3
a = b+c tl = Db

+
e OF

a =
b = a-d t2 =t1 - d /\
b = t2
d
c = b+tc t3 = t2 + ¢ ®1
c = t3 /\
d = a-d =
d t2 b c

15-745: Intro to Data Flow 4

-
What is Data Flow Analysis?

* Local analysis (e.g. value numbering)
— analyze effect of each instruction

— compose effects of instructions to derive information
from beginning of basic block to each instruction

* Data flow analysis
— analyze effect of each basic block

— compose effects of basic blocks to derive information at basic block
boundaries

— from basic block boundaries, apply local technique to generate information on
instructions

[ALSU 9.2]

15-745: Intro to Data Flow 5

-
What is Data Flow Analysis? (Cont.)

* Data flow analysis:
— Flow-sensitive: sensitive to the control flow in a function
— Intraprocedural analysis
 Examples of optimizations:
— Constant propagation
— Common subexpression elimination
— Dead code elimination

a=>b+ c
d =17 : T
— For each variable x, determine:
e=Db+ c a = 243 Value of x?
o—ae—— Which “definition” defines x?
e = d+3
g=a Is the definition still meaningful (live)?

15-745: Intro to Data Flow 6

Static Program vs. Dynamic Execution

B1 a =10

— |
vy

B2 || 1f input () p»exit

'

b = a
B3|l 2 = 11

Statically: Finite program
Dynamically: Can have infinitely many possible execution paths

Data flow analysis abstraction:

— For each pointin the program:
combines information of all the instances of the same program point.

Example of a data flow question:
— Which definition defines the value used in statement “b =a”?

15-745: Intro to Data Flow 7

Effects of a Basic Block

e Effect of a statement:a = b+c
* Uses source variables (b and c)
* Kills an old definition (old definition of a)
* Defines a new definition (a)

 Compose effects of statements -> Effect of a basic block

* Alocally exposed use in a b.b. is a use of a data item that is not preceded in the b.b. by
a definition of the data item.

* Any definition of a data item in the b.b. kills all other definitions of the same data item.
* Alocally available definition = last definition of data item in b.b.

tl = rl+r2

r2 = tl locally exposed uses? rl

t2 = r2+rl <::|

rl = £2 kills any definitions? Any other
£3 = ri1*rl fiefn of t2
2 = 3 in program
if r2>100 goto L1 locally available definition? t2

15-745: Intro to Data Flow 8

ll. Reaching Definitions ALSU9.2.4

Bl [40. v —
do: y 3 d1 reaches

dl: x = 10 hi f o
E> a2 y = 11 this point?

if e

B2 /\ B3
%d3:x=x+1 d5:x=4%
d4: y = yt+4 dée: z = x

=

e Every assignment is a definition

* A definition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

* Problem statement

— For each point in the program, determine if each definition in the program
reaches the point

— A bit vector per program point, vector-length = #defs

15-745: Intro to Data Flow 9

Reaching Definitions

Bl gg i : io d2 reaches
42: y = 11 this point?
if e
B2 /\ B3 <E
d3: x = x+1 ds5: x = 4
dd: y = y+4 d6:z=x<EI

= =

e Every assignment is a definition

* A definition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

* Problem statement

— For each point in the program, determine if each definition in the program
reaches the point

— A bit vector per program point, vector-length = #defs

Carnegie Mellon -

15-745: Intro to Data Flow 10

Reaching Definitions: Another Example

dOo: a = x

4

Ll: if input() GOTO L2

dl: b = a ‘§§§§§§§§§E§§$;§;;T$i

d2 reaches
this point?

d2: a =y
GOTO L1

15-745: Intro to Data Flow 11

Data Flow Analysis Schema

entry
out[entry]* * /

inlBl . Bl ! } forward
1 .
out[B1] analysis
in[B2] /\ in[B3]

B2 B3
£, £5

out[B2] out[B3]
Mxit]

exit

* Build a flow graph (nodes = basic blocks, edges = control flow)
* Set up a set of equations between in[b] and out[b] for all basic blocks b
— Effect of code in basic block:
 Transfer function f, relates in[b] and out[b], for same b
— Effect of flow of control:
* relates out[b], in[b’] if b and b’ are adjacent

* Find a solution to the equations

15-745: Intro to Data Flow 12

Effects of a Statement

in[Bl]
d0o: vy = 3 fi0
v
dl: x = 10 fy
v
d2: y = 11 fy,
out[Bl]

* f,: Atransfer function of a statement
— abstracts the execution with respect to the problem of interest

* Consider Reaching Definitions. For a statement s (e.g., d: x =y + 2):
out[s] = f (in[s]) = Gen[s] U (in[s]-Kill[s])

— Gen[s]: definitions generated: Gen[s] = {d}

— Propagated definitions: in[s] - Kill[s],
where Kill[s]=set of all other defs to x in the rest of program

15-745: Intro to Data Flow 13

Effects of a Basic Block

in[Bl]
do: y =3 fio
v
di: x =10 fa1 fe = faa farfao
L 4
out [BL] d2: y = 11 f,,

* Transfer function of a statement s:
» out[s] =f(in[s]) = Gen[s] U (in[s]-Kill[s])
* Transfer function of a basic block B:
* Composition of transfer functions of statements in B
e out[B] = fg(in[B]) = fy, T, o (in[B])
= Gen[d,] U ((Gen[d,] U ((Gen[d,] U (in[B]-Kill[d,]))-Kill[d,])) - Kill[d,])
= Gen[d,] U (Gen[d,] U (Gen[d,] - Kill[d,]) - Kill[d,]) U
(in[B] - (Kill[d,] U Kill[d,] U Kill[d,]))
= Gen[B] U (in[B] - Kill[B])

e Gen[B]: locally available definitions (defined locally & reaches end of bb)
 Kill[B]: set of definitions killed by B

15-745: Intro to Data Flow 14

-]
Reaching Definitions Example

Bl do: y =3 f Gen Kill
dl: x = 10 1 {1,2}{0,2,3,4,5}
d2: y = 11 2 {3,4} {0,1,2,5}
if e 3 {5,6} {1,3}
—
B2 . - . - B3
e v = ;Lll ozl Subtlety: d0 & d2
kill each other, but
TS d2 is still generated

 transfer function f, of a basic block b: OUT[b] = f_(IN[b])
incoming reaching definitions -> outgoing reaching definitions

 Abasicblock b
* generates definitions: Gen[b],
— set of definitions in b that reach end of b
* kills definitions: in[b] - Kill[b],
where Kill[b]=set of defs killed by defs in b
* out[b] = Gen[b] U (in(b)-Kill[b])

15-745: Intro to Data Flow 15

-
Effects of the Edges (acyclic)

[entry |
out[entry] ¢ /
in[B1]
fl
out[Bl]
in [BZ] /\
out[B2]

* out[b] =f,(in[b])

wxit]

[exit

e Join node: a node with multiple predecessors

* meet operator:
in[b] = out[p,] U out[p,] U ...

U out[p,], where

Py, ---» P, are all the predecessors of b

15-745: Intro to Data Flow

16

in[B3]

out[B3]

in[exit] = out[B2] U out[B3]

Cyclic Graphs

out [entry] \
in[1l] v

dl: a = 10
out[1]

1

— 3 |
in[2] Y in[exit]
ea| ife @D
in[3] J

dz: a = 11
out [3] ‘

e Equations still hold
* out[b] =f (in[b])
* in[b] = out[p,] U out[p,] U ... Uout[p,], p,, ..., P, pred.

in[B2] = out[B1] U out[B3]

* Find: fixed point solution

15-745: Intro to Data Flow 17

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
out[Entry] = O

// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = O

// iterate
While (changes to any out[] occur) {
For each basic block B other than Entry {
in[B] = U(out[p]), for all predecessors p of B
out[B] = £f;(in[B]) // out[B]=gen[B] U (in[B]-kill[B])

15-745: Intro to Data Flow 18

Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize

out[Entry] = J // could set out[Entry] to special def

// if reaching then undefined use
For all nodes i

out[i] = O // could optimize by out[i]=gen[i]
ChangedNodes = N

// iterate
While ChangedNodes # J {
Remove i from ChangedNodes

in[i] = U(out[p]), for all predecessors p of i
oldout = out[i]
out[i] = £, (in[i]) // out[i]=gen[i] U(in[i]-kill[i])

if (oldout # out[i]) {
for all successors s of i
add s to ChangedNodes

15-745: Intro to Data Flow 19

Reaching Definitions Example

IN[b] = U(OUT[pred(b)])

(entry) .
OUT[b] = Gen[b] U] First Pass Second Pass
(IN(b)-Kill[b]) 1. 1 - o1 IN[B1] 0000000 0000000
Bl | o 5 =
. : J =n
Init: OUT[b]=J d3: a = ul
OUT[B1] 1110000 1110000
li IN[B2] 1110000 1110111
oo ddr 1= 141
d5: 3 = j-1
OUT[B2] 0011100 0011110
IN[B3] 0011100 0011110
B3 [do: a = u2
OUT[B3] 0001110 0001110
\, IN[B4] 0011110 0011110
B4 | d7: 1 = u3
| OUT[B4] 0010111 0010111
| .
(et) IN[exit] 0010111 0010111 |
Fixed point!

15-745: Intro to Data Flow 20

A valid solution to Reaching Definitions?

out [entry]={}

L in[11=0)
| out [11={}
4 Y v in[2]={dl} Fixed point:

another iteration
out [2]={d1} of algorithm
won’t change
in/out values

AL in[3]={d1l}
b

out [3]={d1l}

in[exit]

* Isthe solution a fixed point? yes Isitvalid? nho

* Will the worklist algorithm generate this answer? no
 What if add control flow edge shown in red? Yyes

15-745: Intro to Data Flow 21

lll. Live Variable Analysis

e Definition
— Avariable v is live at point p if

* the value of vis used along some path in the flow graph starting at p.
— Otherwise, the variable is dead.

* Motivation IE> dOo: v = 3
* e.g. register allocation v live at di: x = 10
e is DO d2: y =1
for i = 0 to n this point? Y
. if e
i m{Z/\
for i = 0 to n :Y=2 z =
i v = 2 y =

* Problem statement \ /

— For each basic block
* determine if each variable is live in each basic block

— Size of bit vector: one bit for each variable

15-745: Intro to Data Flow 22

Live Variables: Effects of a Basic Block (Transfer Function)

* Insight: Trace uses backwards to the definitions

an execution path control flow
i det IN[b] = f,(OUT[b])
. f backward
I—!_v—l def b analysis
* OUT[b]
'?' use
* Abasic block b can example

* generate live variables: Use[b]

— set of locally exposed uses in b dd: d =1

e propagate incoming live variables: OUT[b] - Def[b], i56 < i 2
— where Def[b]= set of variables defined in b.b. -4
 transfer function for block b: IN[b] =
in[b] = Use[b] U (out[b]-Def[b]) {a} U (OUT[b] - {a,c,d})
Carnegie Mellon -

15-745: Intro to Data Flow 23

Flow Graph

out[entr][entrY]
T

in[1]

b=1

out[l] |& T 0

in[2] /\ in[3]

a=1 d = a
c =Db b=4d
out[2] out[3]
Mxit]
exit]

* in[b] =f, (out[b])
e Join node: a node with multiple successors
* meet operator:
out[b] =in[s;] Uin[s,] U ... Uin[s], where

Sy, - S, are all successors of b

WIN PR H

Use Def
{} {a,b}
{b} {a,c}
{a} {b,d}

15-745: Intro to Data Flow 24

Live Variables: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
in[Exit] = J

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = O

// iterate
While (changes to any in[] occur) {
For each basic block B other than Exit {
out[B] = U(in[s]), for all successors s of B
in[B] = f;(out[B]) // in[B]=Use[B] U (out[B]-Def[B])

15-745: Intro to Data Flow 25

-]
Live Variables Example

OUT[b] = U (IN[succ(b)])

(entry) First Pass Second Pass
IN[b] = Use[b] U
(OUT(b)-Def[b]) 4 OUT[entry] {m,n,ul,u2,u3} {m,n,ul,u2,u3}
- dl: i = m-1 IN[B1] {m,n,ul,u2,u3} {m,n,ul,u2,u3}
Init: IN[b]=J d2: j = n
d3: a = ul
OouT[B1] {i,j,u2,u3} {i,j,u2,u3}
l* IN[B2] {i,j,u2,u3} {i,j,u2,u3}
B2 dd: 1 = 1+1
d5: § = -1 _
OUT[B2] {u2,u3} {j,u2,u3}
IN[B3] {u2,u3} {j,u2,u3}
B3 |do: a = u2]
OUT[B3] {u3} {j,u2,u3}
\ IN B4 u3 .’uz’u3
B4 | d7: 1 = u3 [B4] { } {j }
| OouT[B4] {} {i,j,u2,u3}
Y
C exit) Fixed point!

15-745: Intro to Data Flow 26

V. Framework

Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables
Direction forward: backward:

out[b] = f (in[b]) in[b] = f,(out[b])

in[b] = A out[pred(b)] out[b] = A in[succ(b)]
Transfer function f,(x) = Gen, U (x —Kill,) f,(x) = Use, U (x -Def,)
Meet Operation (A) U U
Boundary Condition out[entry] = O in[exit] = &
Initial interior points out[b] =& in[b] =<

Other Data Flow Analysis problems fit into this general framework,
e.g., Available Expressions [ALSU 9.2.6]

15-745: Intro to Data Flow 27

Key Questions

e Correctness

* equations are satisfied, if the analysis algorithm terminates.

* Precision: how good is the answer?

* isthe answer ONLY a union of all possible executions?

* Convergence: will the analysis terminate?

* or, could there always be some nodes that change?

* Speed: how fast is the convergence? Friday

* how many times will we visit each node? When |t’S B\AM' and the
lecture| episede ends with a

cliffhanger)

15-745: Intro to Data Flow 28

| don’tineed sleep. I need answers.

-
Today’s Class

|. Structure of data flow analysis
Il. Example 1: Reaching definition analysis
lll. Example 2: Liveness analysis

IV. Framework

Monday’s Class

* Foundations of Data Flow Analysis
— ALSU 9.3

15-745: Intro to Data Flow 29

