Lecture 6

Foundations of Data Flow Analysis

- I. Meet operator
- II. Transfer functions
- III. Correctness, Precision, Convergence
- IV. Efficiency

Review: Reaching Definitions

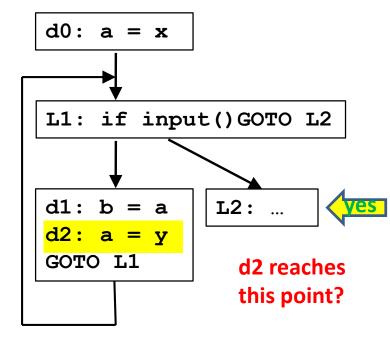
- A definition **d** reaches a point *p* if
 - there exists a path from the point immediately following *d* to *p* such that *d* is not killed (overwritten) along that path.
- A basic block b can
 - generate new definitions: Gen[b]
 - set of definitions in b that reach end of b
 - propagate incoming definitions: in[b] Kill[b],
 - where Kill[b]= set of defs killed by defs in b
- Forward analysis
 - transfer function for block b:

out[b] = Gen[b] U (in[b]-Kill[b])

• meet operator:

 $in[b] = out[p_1] U out[p_2] U ... U out[p_n]$, where

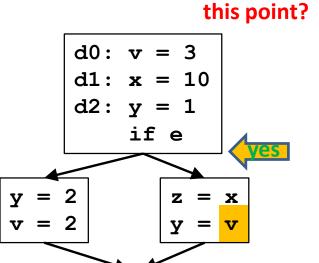
 $p_1, ..., p_n$ are all the predecessors of b



Review: Live Variable Analysis

- A variable **v** is **live** at point *p* if
 - the value of \mathbf{v} is used along some path in the flow graph starting at p.
- A basic block b can
 - generate live variables: Use[b]
 - set of locally exposed uses in b
 - propagate incoming live variables: out[b] Def[b],
 - where Def[b]= set of variables defined in b.b.
- Backward analysis
 - transfer function for block b: in[b] = Use[b] U (out[b]-Def[b])
- **meet** operator:

out[b] = in[s₁] U in[s₂] U ... U in[s_n], where s₁, ..., s_n are all successors of b



v live at

Review: Data Flow Analysis Framework

	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: out[b] = f _b (in[b]) in[b] = \land out[pred(b)]	backward: in[b] = f _b (out[b]) out[b] = ^ in[succ(b)]
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	$f_b(x) = Use_b \cup (x - Def_b)$
Meet Operation (\land)	\cup	\cup
Boundary Condition	out[entry] = \emptyset	$in[exit] = \emptyset$
Initial interior points	out[b] = Ø	$in[b] = \emptyset$

Other Data Flow Analysis problems fit into this general framework, e.g., Available Expressions & Constant Propagation (Lecture 7)

A Unified Framework

- Data flow problems are defined by
 - Domain of values: V
 - Meet operator ($V \land V \rightarrow V$), initial value
 - A set of transfer functions ($V \rightarrow V$)
- Usefulness of unified framework
 - To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
 - If meet operators and transfer functions have properties X, then we know Y about the above.
 - Reuse code

Overview: A Check List for Data Flow Problems

Semi-lattice

- set of values
- meet operator
- top, bottom
- finite descending chain?

• Transfer functions

- function of each basic block
- monotone
- distributive?

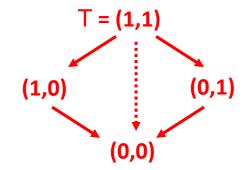
Algorithm

- initialization step (entry/exit, other nodes)
- visit order: rPostOrder
- depth of the graph

I. Meet Operator

- Properties of the meet operator
 - commutative: $x \land y = y \land x$

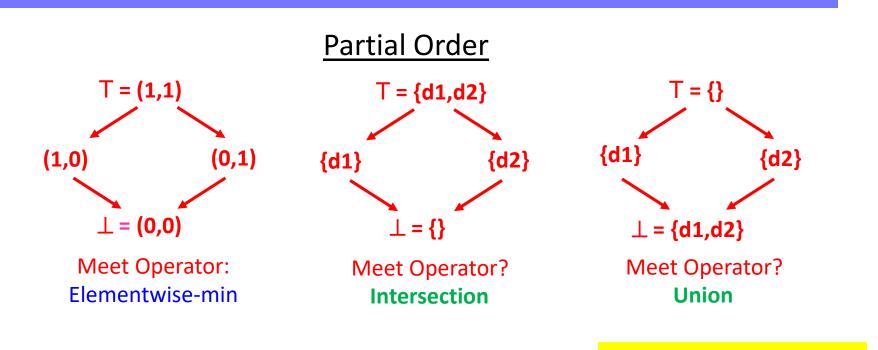
- idempotent: $x \land x = x$
- associative: $x \land (y \land z) = (x \land y) \land z$
- there is a Top element T such that $x \wedge T = x$
- Meet operator defines a partial ordering on values
 - $x \le y$ if and only if $x \land y = x$
 - Transitivity: if $x \le y$ and $y \le z$ then $x \le z$
 - Antisymmetry: if $x \le y$ and $y \le x$ then x = y
 - Reflexivity: $x \le x$



Meet Operator: Elementwise-min

Note: x < y is depicted as $y \rightarrow x$ in diagram

Note: typically show only minimal (i.e., transitively reduced) set of edges. [not the dashed edge above]



- Top and Bottom elements
 - Top T such that: $x \wedge T = x$
 - Bottom \perp such that: $\mathbf{x} \land \perp = \perp$
- Values and meet operator in a data flow problem define a semi-lattice:
 - there exists a T, but not necessarily a \perp .
- x, y are ordered: $x \le y$ then $x \land y = x$

Note: x < y is depicted as

 $y \rightarrow x$ in diagram

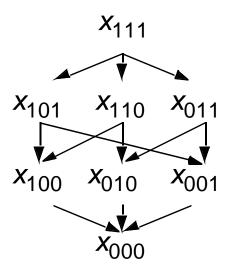
One vs. All Variables/Definitions

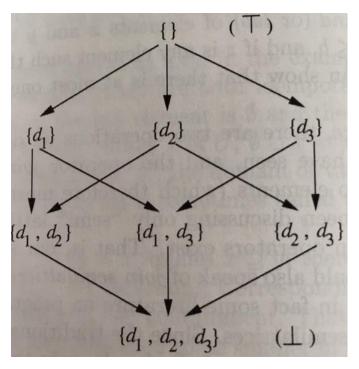
• Lattice for each variable: e.g. intersection

1

n

• Lattice for three variables for intersection:

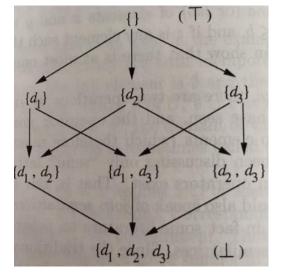




How many variables? 3 Meet operator? union

Further Properties of Meet Operators

- x < y means x is more conservative than y
 - Prefer x only if necessary for correctness
 - Otherwise y is more precise
- x, y are ordered: $x \le y$ iff $x \land y = x$
 - $\hspace{0.2cm} \text{E.g., } \{d_1, d_2\} \leq \{d_2\} \text{ and } \{d_1, d_2\} \wedge \{d_2\} = \{d_1, d_2\}$
- For all a, b (even if unordered): $a \land b \leq a$
 - Why? $(a \land b) \land a = (b \land a) \land a = b \land (a \land a)$ = $b \land a = a \land b$



Union ≤ : superset

- Thus, considering more paths decreases result of
 (or leaves unchanged)
- What if x and y are not ordered? $x \land y \le x$ and $x \land y \le y$
 - If $w \le x$ and $w \le y$ then $w \le x \land y$
 - E.g., x={ d_1 }, y={ d_3 }, and w={ d_1, d_3 } or { d_1, d_2, d_3 }

Descending Chain

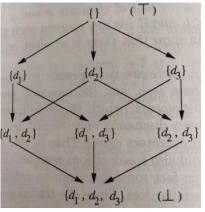
- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.

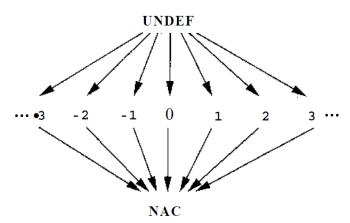
 $x_0 > x_1 > x_2 > \dots$

• Height of values in reaching definitions?

Height=n, where n is the number of definitions

- Important property: finite descending chain
 - Can an infinite lattice have a finite descending chain? yes
 - Example: Constant Propagation/Folding
 - To determine if an integer variable is a constant
 - Domain of values:
 - undef, ... -1, 0, 1, 2, ..., not-a-constant





II. Transfer Functions

e.g., out[b] = Gen[b] U (in[b]-Kill[b])

- Basic Properties $f: V \rightarrow V$
 - Has an identity function
 - There exists an f such that f (x) = x, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, then $f_1 \cdot f_2 \in F$

<u>Monotonicity</u>

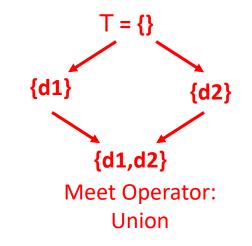
Transfer function $f: V \rightarrow V$ e.g., out[b] = Gen[b] U (in[b]-Kill[b])

- A framework (F, V, \land) is monotone if and only if
 - $x \le y$ implies $f(x) \le f(y)$
 - i.e. a "smaller or equal" input to the same function will always give a "smaller or equal" output

- Equivalently, a framework (F, V, \wedge) is monotone if and only if
 - $f(x \land y) \leq f(x) \land f(y)$
 - i.e. merge input, then apply *f* is **small than or equal to** apply the transfer function individually and then merge the result

Example: Reaching Definitions is Monotone

- Reaching definitions: $f(x) = Gen \cup (x Kill), \land = \cup$
 - Definition 1: $x \le y$ implies $f(x) \le f(y)$
 - $x \le y$ implies $(x Kill) \le (y Kill)$ implies Gen $\cup (x - Kill) \le Gen \cup (y - Kill)$
 - Definition 2: $f(x \land y) \le f(x) \land f(y)$
 - (Gen ∪ ((x ∪ y) Kill))
 = (Gen ∪ (x Kill)) ∪ (Gen ∪ (y Kill))

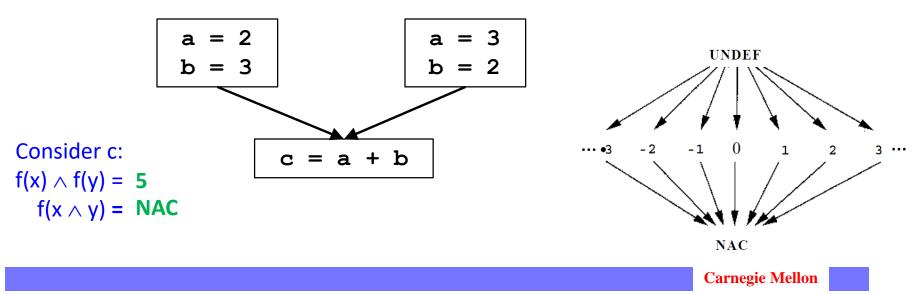


 $[x < y \text{ iff } y \rightarrow x]$ Union: y is a subset of x

- Note: Monotone framework does not mean that f(x) ≤ x
 - E.g., consider reaching definitions, where d₁ and d₂ define the same variable
 - Then the transfer function f(x) for a basic block that defines only d₁ has Gen = {d₁} and Kill = {d₂}
 - Let $x = \{d_2\}$. Then $f(x) = \{d_1\}$ which is unordered w.r.t. $x = \{d_2\}$.
- If input(second iteration) ≤ input(first iteration)
 - result(second iteration) ≤ result(first iteration)

Distributivity

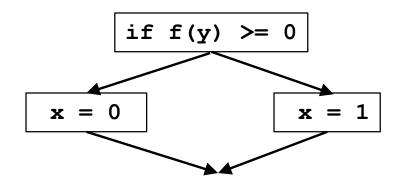
- A framework (*F*, *V*, ∧) is **distributive** if and only if
 - $f(x \land y) = f(x) \land f(y)$
 - i.e., merge input, then apply f is equal to apply the transfer function individually then merge result
- Is Reaching Definitions distributive? yes
- Is Constant Propagation distributive? no



III. Data Flow Analysis

- Definition
 - Let $f_1, ..., f_m : \in F$, where f_i is the transfer function for node *i*
 - $f_p = f_{n_k} \cdot ... \cdot f_{n_1}$, where **p** is a path through nodes $n_1, ..., n_k$
 - f_p = identify function if p is an empty path
- Perfect data flow answer:
 - For each node *n*:

 $\wedge f_{p_i}$ (T), for all possibly executed paths p_i in the program reaching *n*.



If f(y) is always non-negative then right path never taken

In general: Determining all possibly executed paths is undecidable

15-745: Foundations of Data Flow

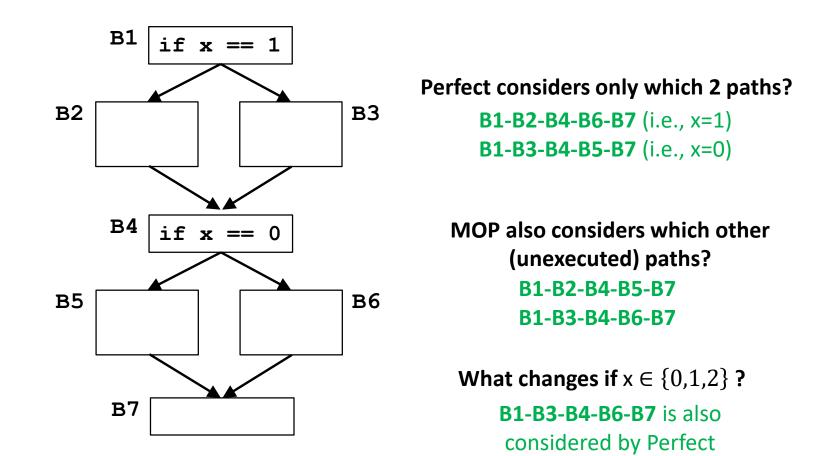
Meet-Over-Paths (MOP)

- Err in the conservative direction
- Meet-Over-Paths (MOP):
 - For each node *n*:

 $MOP(n) = \bigwedge f_{p_i}(T)$, for all paths p_i in data flow graph reaching n

- a path exists as long there is an edge in the code
- MOP = Perfect-Solution \land Solution-to-Unexecuted-Paths
- MOP ≤ Perfect-Solution
- Considers more paths than necessary, hence solution is conservative
 - Meet = union: Definition may reach; Variable may be live
 - Meet = intersection: Expression is always available even when consider extra paths
- Considering too few paths (> Perfect-Solution) would not be safe!
- Desirable solution: as close to MOP as possible

Example: MOP considers more paths than Perfect



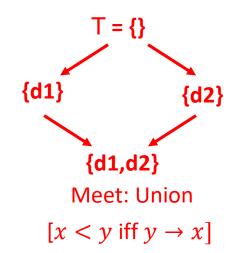
Assume $x \in \{0,1\}$ and B2 & B3 do not update x

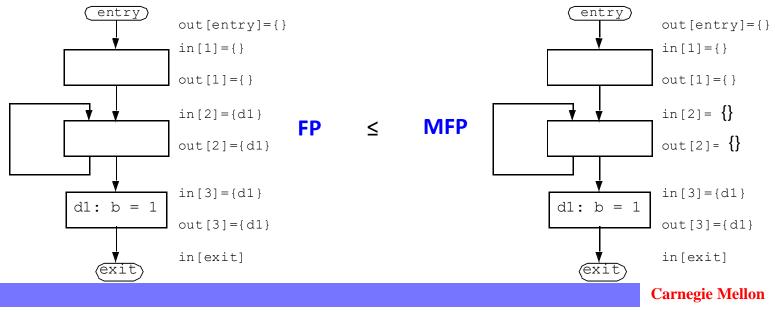
Solving Data Flow Equations

- **Framework** (*F*, *V*, \land) defines set of equations relating in[b]'s and out[b]'s
- Any solution satisfying equations = Fixed Point Solution (FP)
- Iterative algorithm for forward analysis (backward analysis case is symmetric)
 - initializes out[b] to T for all b
 - if framework is monotone & algorithm converges, then it computes Maximum Fixed Point (MFP):
 - MFP is the largest of all solutions to equations (in any other solution, the values of IN[b] and OUT[b] are ≤ the corresponding values of the MFP)
- Properties:
 - $FP \leq MFP \leq MOP \leq Perfect-solution$
 - FP, MFP are safe
 - If monotone & converges, then in[b] ≤ MOP[b]

Solving Data Flow Equations

- Example: Reaching definitions
 - Values = {subsets of definitions}. Init out[b]= {}
 - Meet operator: in[b] = U out[p], for all predecessors p of b
 - Transfer functions: $out[b] = gen_b \cup (in[b] kill_b)$
- Any solution satisfying equations = Fixed Point Solution (FP)
- Iterative algorithm computes Maximum Fixed Point (MFP):
 - In any other solution, the values of IN[b] and OUT[b] are ≤ the corresponding values of the MFP





15-745: Foundations of Data Flow

Partial Correctness of Algorithm

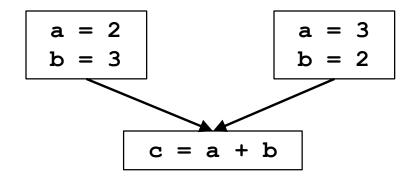
- If data flow framework is monotone (i.e., x ≤ y implies f(x) ≤ f(y)) then if the algorithm converges, IN[b] ≤ MOP[b]
- Proof: Induction on path lengths
 - Define IN[entry] = OUT[entry]
 and transfer function of entry = Identity function
 - Base case: path of length 0
 - Proper initialization of IN[entry]
 - If true for path of length k, $p_k = (n_1, ..., n_k)$, then true for path of length k+1: $p_{k+1} = (n_1, ..., n_{k+1})$
 - Assume: $IN[n_k] \le f_{n_{k-1}}(f_{n_{k-2}}(...f_{n_1}(IN[entry])))$
 - $IN[n_{k+1}] = OUT[n_k] \land ...$

 $\leq \text{OUT}[n_k] = f_{n_k}(\text{IN}[n_k])$

 $\leq f_{n_k}(f_{n_{k-1}}(\dots f_{n_1}(IN[entry])))$ by inductive assumption & monotonicity

Precision

- If data flow framework is distributive (i.e., f(x \lapha y) = f(x) \lapha f(y)) then if the algorithm converges, IN[b] = MOP[b]
- Monotone but not distributive: behaves as if there are additional paths



Additional Property to Guarantee Convergence

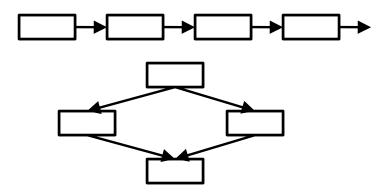
- Data flow framework (monotone) converges if there is a finite descending chain
- For each IN[b], OUT[b], consider the sequence of its values across iterations:
 - if sequence for in[b] is monotonically decreasing $(in_{i+1}[b] \le in_i[b])$ then sequence for out[b] is monotonically decreasing $(out_{i+1}[b] \le out_i[b])$
 - (out[b] initialized to T) Why? Transfer function is monotone
 - if for all predecessors p of b, sequence for out[p] is monotonically decreasing then sequence for in[b] is monotonically decreasing Why?

Consider predecessors p and p' of b such that $out_{i+1}[p] \le out_i[p]$ and $out_{i+1}[p'] \le out_i[p']$. Then $in_{i+1}[b] = out_{i+1}[p] \land out_{i+1}[p'] =$ $(out_{i+1}[p] \land out_i[p]) \land (out_{i+1}[p'] \land out_i[p']) \le out_i[p] \land out_i[p'] = in_i[b]$

- Must be at least one out[b] change to warrant an additional iteration
 - Thus, guaranteed to converge after at most
 (height of lattice) x (number of nodes in flow graph) iterations

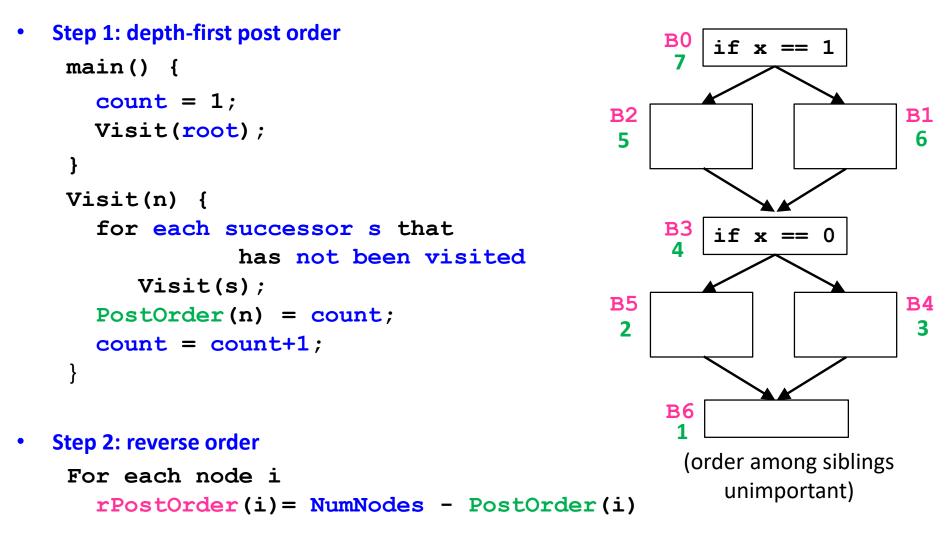
IV. Speed of Convergence

• Speed of convergence depends on order of node visits



• Reverse "direction" for backward flow problems

Reverse Postorder



Depth-First Iterative Algorithm (forward)

```
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */
    out[entry] = init value
    For all nodes i
       out[i] = T
    Change = True
/* iterate */
    While Change {
       Change = False
       For each node i in rPostOrder {
          in[i] = \langle(out[p]), for all predecessors p of i
          oldout = out[i]
          out[i] = f_i(in[i])
          if oldout ≠ out[i]
             Change = True
       }
    }
```

Speed of Convergence

- If cycles do not add information*
 - information can flow in one pass down nodes of increasing order number:

first pass

- passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
 - (2 are necessary even for acyclic CFGs)
 - (2 not 1 since need a last pass where nothing changed)
- What is the depth?
 - corresponds to depth of intervals for "reducible" graphs
 - in real programs: average of 2.75
- * E.g., if a defined in node n_1 reaches a node n_k along a path that contains a cycle (i.e., a repeated node), then the cycle can be removed to form a shorter path from n_1 to n_k such that d reaches n_k .

Carnegie Mellon

[ALSU 9.6.7]

Summary: A Check List for Data Flow Problems

Semi-lattice

- set of values
- meet operator
- top, bottom
- finite descending chain?

• Transfer functions

- function of each basic block
- monotone
- distributive?

Algorithm

- initialization step (entry/exit, other nodes)
- visit order: rPostOrder
- depth of the graph

Today's Class

- I. Meet operator
- II. Transfer functions
- III. Correctness, Precision, Convergence
- IV. Efficiency

Friday's Class

- Global common subexpression elimination
 - ALSU 9.2.6
- Constant propagation/folding
 - ALSU 9.4