Lecture 7

Global Common Subexpression Elimination; Constant Propagation/Folding

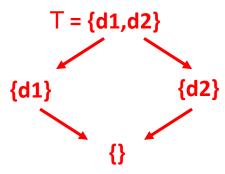
- I. Available Expressions Analysis
- II. Eliminating CSEs
- III. Constant Propagation/Folding

ALSU 9.2.6, 9.4

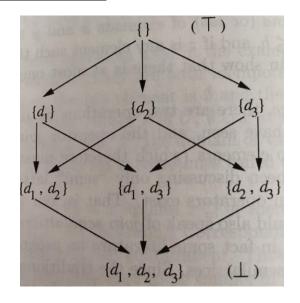
Review: A Check List for Data Flow Problems

Semi-lattice

- set of values V
- meet operator
- Top T
- finite descending chain?



Meet Operator: Intersection



Meet Operator: Union

Review: A Check List for Data Flow Problems

Semi-lattice

- set of values V
- meet operator
- Top T
- finite descending chain?

Transfer functions

- function of a basic block $f: V \rightarrow V$
- closed under composition
- meet-over-paths MOP
- monotone
- distributive?

For each node n: MOP $(n) = \bigwedge f_{p_i}(T)$, for all paths p_i in data-flow graph reaching n.

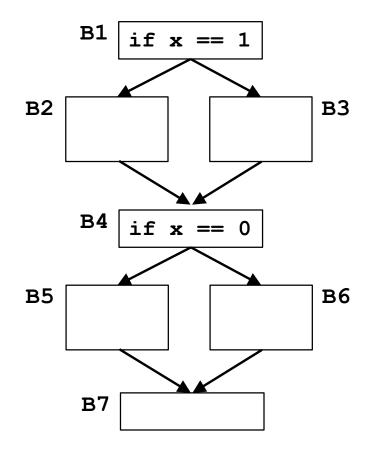
If data flow framework is monotone (i.e., $x \le y$ implies $f(x) \le f(y)$) then if the algorithm converges, $IN[b] \le MOP[b]$ *, so analysis is ? safe.

Data flow framework (monotone) converges if its lattice has? a finite descending chain.

If data flow framework is distributive (i.e., $f(x \land y) = f(x) \land f(y)$) then if the algorithm converges, IN[b] = MOP[b] *, so ? precision is high.

* for backward analysis OUT[b]

Review: MOP considers more paths than Perfect



Perfect considers only:

MOP: Also considers unexecuted paths

What changes if $x \in \{0,1,2\}$?

B1-B3-B4-B6-B7 is also a Perfect path

Assume $x \in \{0,1\}$ and B2 & B3 do not update x

Review: A Check List for Data Flow Problems

Semi-lattice

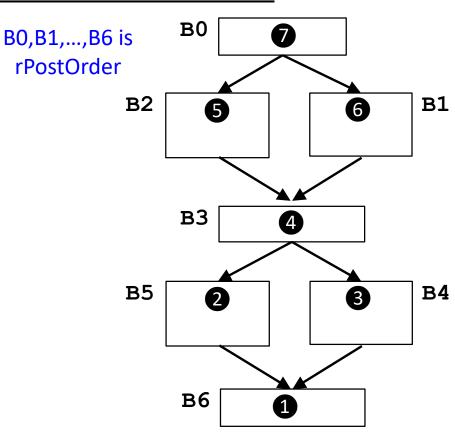
- set of values V
- meet operator ^
- Top T
- finite descending chain?

Transfer functions

- function of a basic block $f: V \rightarrow V$
- closed under composition
- meet-over-paths MOP
- monotone
- distributive?

Algorithm

- initialization step (entry/exit, other nodes)
- visit order: rPostOrder
- depth of the graph



Number of iterations = number of back edges in any acyclic path + 2

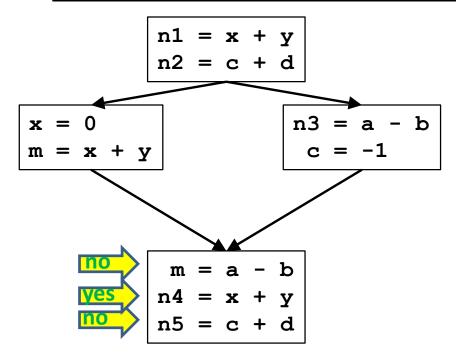
[ALSU 9.6.7]

Review: Speed of Convergence

- If cycles do not add information*
 - information can flow in one pass down nodes of increasing order number:

- passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
 - (2 are necessary even for acyclic CFGs)
 - (2 not 1 since need a last pass where nothing changed)
- * E.g., if a defn d in node n_1 reaches a node n_k along a path that contains a cycle (i.e., a repeated node), then the cycle can be removed to form a shorter path from n_1 to n_k such that d reaches n_k .

I. Available Expressions Analysis

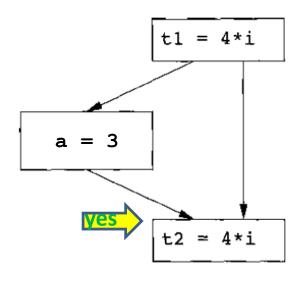


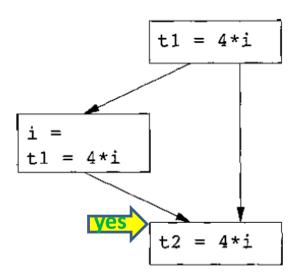
Is right-hand-side expression available?

Part of Assignment #1

- Availability of an expression E at point P
 - DEFINITION: Along every path to P in the flow graph:
 - E must be evaluated at least once
 - no variables in E redefined after the last evaluation
 - Observation: E may have different values on different paths (e.g., x+y above)

Available Expressions Example

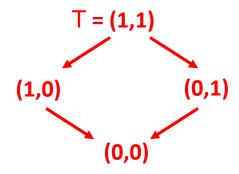




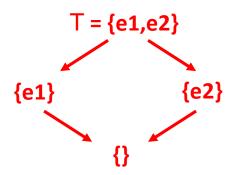
Is 4*i available at this point?

Formulating the Problem

- Domain:
 - a bit vector, with a bit for each "textually unique" expression in the program
- Forward or Backward? Forward
- Lattice Elements? All bit vectors of given length
- Meet Operator? Elementwise-min
 - check: commutative, idempotent, associative
- Partial Ordering
- Top? (1,1,...,1)
- Bottom? (0,0,...,0)
- Boundary condition: entry/exit node? out[entry]=(0,...,0)
- Initialization for iterative algorithm? Coming soon...



Meet Operator: Elementwise-min



Meet Operator: Intersection

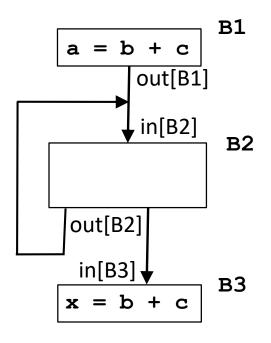
Carnegie Mellon

Transfer Functions

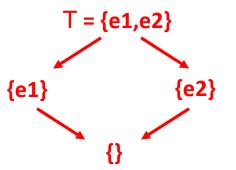
- Expression E is available at point P iff along every path to P in the flow graph:
 - E must be evaluated at least once
 - no variables in E redefined after the last evaluation
- Can use the same equation as reaching definitions
 - out[b] = gen[b] ∪ (in[b] kill[b])
- Start with the transfer function for a single instruction: x = y + z
 - When does the instruction kill an expression E? It defines a variable in E.
 - When does it generate an expression E? It evaluates E and doesn't kill it.
- Calculate transfer functions for complete basic blocks by composing individual instruction transfer functions

Statement	Available Expressions
. h	{}
a = b + c	{b+c}
b = a - d	{a-d}
c = b + c	
	{a-d}
d = a - d	{}

Initialization for Interior Nodes



out[b] = Gen[b] U (in(b)-Kill[b])



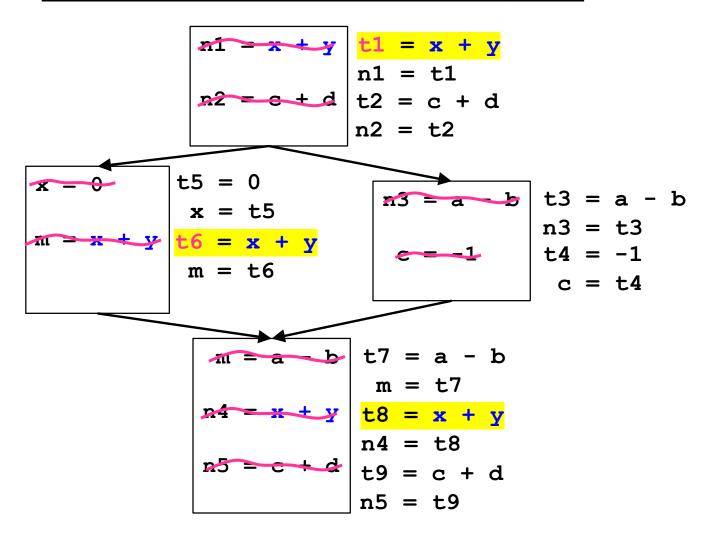
Meet Operator: Intersection

- What if initialize out[B2] = {}? Imprecise: in[B2]=out[B1] ∧ out[B2] = {} Thus, in[B3]={} each iteration, so conclude "b+c" is NOT available in B3.
- What if initialize out[B2] = T? Precise: in[B2]=out[B1]
 Thus, in[B3]={"b+c"}, so conclude "b+c" is available in B3.
- Initialize out[b]= T for all interior b

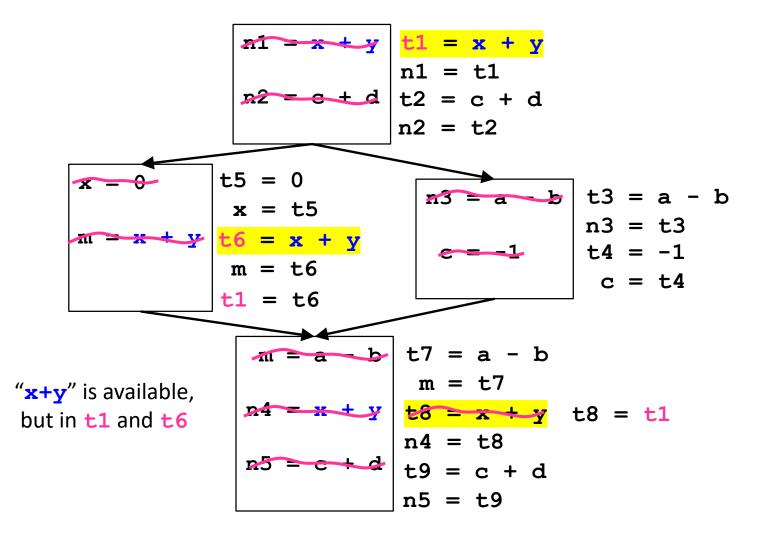
II. Eliminating CSEs

- Value Numbering (within basic block)
 - Eliminates local common subexpressions
- Available expressions (across basic blocks)
 - Provides the set of expressions available at the start of a block
- If CSE is an "available expression", then transform the code
 - Original destination may be:
 - a temporary register
 - overwritten
 - different from the variables on other paths
 - One solution: Copy the expression to a new variable at each evaluation reaching the redundant use

Example Revisited: Value Numbering Only

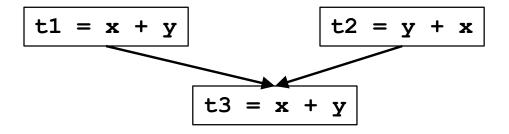


Example Revisited: Eliminating the CSE



<u>Limitation: Textually Identical Expressions</u>

Commutative operations

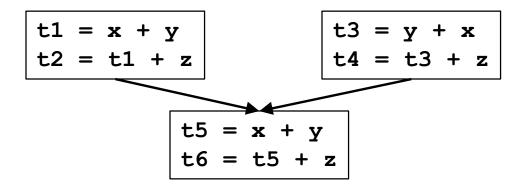


- Won't detect x + y as an available expression
- Solution: Sort the operands

Further Improvements

Examples

Expressions with more than two operands



Textually different expressions may be equivalent

$$t1 = x + y$$
if $t1 > y$ goto L1
$$z = x$$
After copy propagation:
$$t2 = z + y$$

$$t2 = x + y$$

Solution: Use multiple passes of GCSE combined with copy propagation

Summary

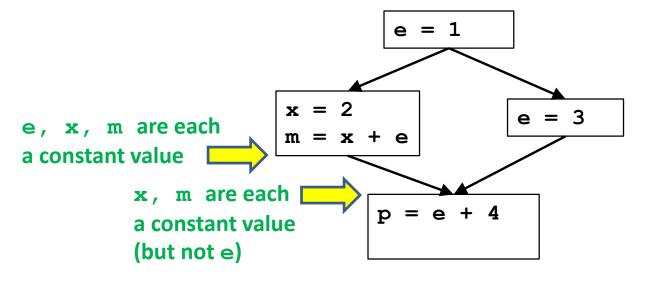
	Reaching Definitions	Available Expressions	
Domain	Sets of definitions	Sets of expressions	
Direction	forward: out[b] = $f_b(in[b])$ $in[b] = \land out[pred(b)]$	forward: out[b] = $f_b(in[b])$ $in[b] = \land out[pred(b)]$	
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	$f_b(x) = Gen_b \cup (x - Kill_b)$	
Meet Operation (∧)	U	\cap	
Boundary Condition	$out[entry] = \emptyset$ $out[entry] = \emptyset$		
Initial interior points	out[b] = T = ∅	out[b] = T = all expressions	

Available Expressions

 $Kill_b$ = all E such that block b defines a variable in E Gen_b = all E such that block b evaluates E and doesn't later kill it

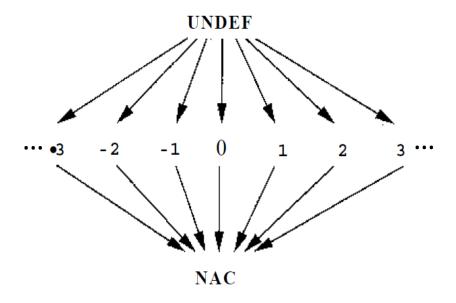
III. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?



Which variables are constants?

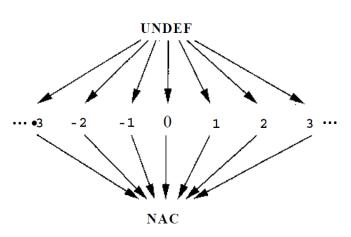
Semi-lattice Diagram



- Finite domain? No (unless bound number of bits)
- Finite height? Yes (2)
- One such lattice for each variable in the program

Meet Operation in Table Form

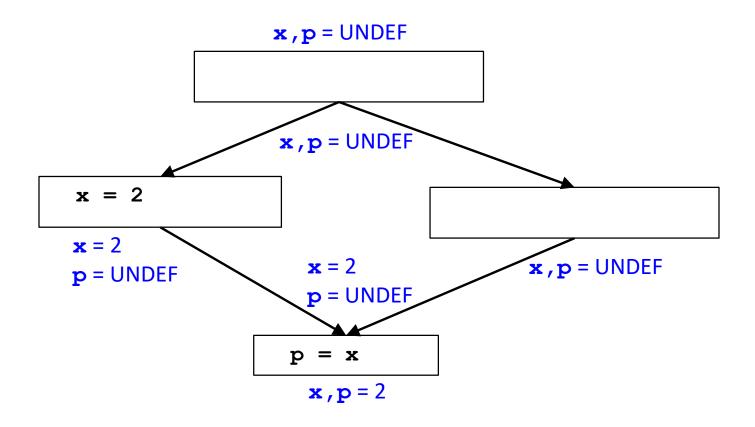
Meet Operation:



v1	v2	v1 ∧ v2	
UNDEF	UNDEF	UNDEF	
	c ₂	c ₂	
	NAC	NAC	
c ₁	UNDEF	c ₁	
	C ₂	$c_{1,}$ if $c_1 = c_2$ NAC otherwise	
	NAC	NAC	
NAC	UNDEF	NAC	
	c ₂	NAC	
	NAC	NAC	

- Note: UNDEF \wedge $c_2 = c_2$

Example



Transfer Function

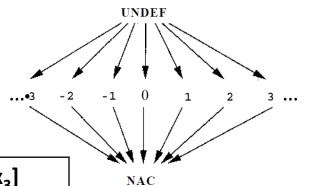
- Assume a basic block has only 1 instruction
- Let IN[b,x], OUT[b,x]
 - be the information for variable x at entry and exit of basic block b
- OUT[entry, x] = UNDEF, for all x.
- Non-assignment instructions: OUT[b,x] = IN[b,x]
- Assignment instructions: (next page)

Transfer Function (cont.)

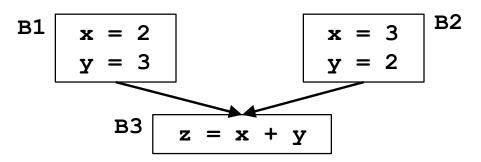
- Let an assignment be of the form x₃ = x₁ + x₂
 - "+" represents a generic operator
 - OUT[b,x] = IN [b,x], if $x \neq x_3$

IN[b,x ₁]	IN[b,x ₂]	OUT[b,x ₃]	
	UNDEF	UNDEF	
UNDEF	c ₂	UNDEF	
	NAC	NAC	
C ₁	UNDEF	UNDEF	
	c ₂	c ₁ + c ₂	
	NAC	NAC	
NAC	UNDEF	NAC	
	c ₂	NAC	
	NAC	NAC	

•
$$[v_1 v_2...] \le [v_1' v_2'...], f([v_1 v_2...]) \le f([v_1' v_2'...])$$



Not Distributive



	x	У	Z
$f_1(T)$	2	3	UNDEF
$f_2(T)$	3	2	UNDEF
$f_1(T) \wedge f_2(T)$	NAC	NAC	UNDEF
$f_3(f_1(T) \wedge f_2(T))$	NAC	NAC	NAC
$f_3(f_1(T))$	2	3	5
$f_3(f_2(T))$	3	2	5
$f_3(f_1(T)) \wedge f_3(f_2(T))$	NAC	NAC	5

- Not Distributive: $f_3(f_1(\mathsf{T}) \land f_2(\mathsf{T})) < f_3(f_1(\mathsf{T})) \land f_3(f_2(\mathsf{T}))$
- Iterative solution is not precise. It is not wrong. It is conservative.

Summary of Constant Propagation

A useful optimization

- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem
 - a problem where cycles can add information

Today's Class

- I. Available Expressions Analysis
- II. Eliminating CSEs
- III. Constant Propagation/Folding

Monday's Class

- Induction Variable Optimizations
 - ALSU 9.1.8, 9.6, 9.8.1