
Carnegie Mellon

Lecture 9:

Loop Invariant Computation

and Code Motion

I. Loop-invariant computation

II. Algorithm for code motion

III. Partial redundancy elimination

Phillip B. Gibbons 15-745: Loop Invariance 1

ALSU 9.5-9.5.2

Carnegie Mellon

15-745: Loop Invariance 2

Review: Dominators

11

1

5

6 7

8

13

2

3

4

9

10

12

1

11

5

6 7 8

2

3

4 9

10

12 13

Control
Flow Graph

Dominance Tree (D-Tree)
x sdom w iff x is a proper ancestor of w

x dominates w (x dom w) iff x sdom w OR x = w

All paths to 6, 7, or 8 must visit 5 first

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

Carnegie Mellon

• Single entry-point: header

– a header dominates all nodes in the loop

• A back edge is an arc t->h whose
head h dominates its tail t

– a back edge must be a part of
at least one loop

• The natural loop of a back edge t->h
is the smallest set of nodes that
includes t and h, and has
no predecessors outside the set,
except for the predecessors of the header h.

Review: Natural Loops

15-745: Loop Invariance 3

11

1

5

6 7

8

13

2

3

4

9

10

12

What are the back edges?

3->3 and 8->5

What are the natural loops?

highlighted in yellow above

Carnegie Mellon

Recall: Finding Back Edges

1. Construct a depth-first spanning tree of the CFG

– Edges traversed in a depth-first search of the CFG
form a depth-first spanning tree

– Advancing edges (A): from ancestor to proper descendant

– Cross edges (C): from right to left

– Retreating edges (R): from descendant to ancestor

2. Determine which Retreating edges are Back edges (t->h, h dominates t)

• Note: h can never dominate t for an advancing or cross edge t->h

• Could apply step 2 to all edges, skipping step 1---but rPostOrder uses step 1

15-745: Induction Variables 4

A

A

A

A

AA

A

R

R

R

R

C

C

1

3

2

7

4 8

5

6

lca

t
h C

• Cross edge: t is not ancestor/descendent of h
• Thus, there is a least common ancestor, lca,

of h and t in the tree
• Thus, entry->lca->t is a path without h

Carnegie Mellon

I. Loop-Invariant Computation and Code Motion

• A loop-invariant computation:

– a computation whose value does not change as long as control stays
within the loop

• Code motion:

– to move a statement within a loop to the preheader of the loop

15-745: Loop Invariance 5

A = B + C

F = A + 2

E = 3

D = A + 1

header

outside loop

B, C not defined
in loop

Loop-invariant?

function of
loop inv comp

has 1 def inside
loop, 1 outside

constantyes
yes

yes

no

Carnegie Mellon

Algorithm

• Observations

– Loop invariant

• operands are defined outside loop or invariant themselves

– Code motion

• not all loop invariant instructions can be moved to preheader

• Algorithm

– Find invariant expressions

– Conditions for code motion

– Code transformation

15-745: Loop Invariance 6

Carnegie Mellon

Algorithm: Detecting Loop Invariant Computation

• Compute reaching definitions

• Mark INVARIANT if
all the definitions of B and C that reach a statement A=B+C
are outside the loop

– What about a constant B, C?

• Repeat: Mark INVARIANT if

– (all reaching definitions of B are outside the loop OR
there is exactly one reaching definition for B and it is from a loop-invariant
statement inside the loop)

– AND (similarly for C)

until no changes to the set of loop-invariant statements occur.

15-745: Loop Invariance 7

invariant

Carnegie Mellon

Which Statements are Loop Invariant?

15-745: Loop Invariance 8

E = 2 E = 3

D = A + 1

F = E + 2

A = B + C all reaching defs of B, C
are outside loop

constant

one reaching def of A, from
loop-inv. statement inside loop

>1 reaching defs of E
from inside loop

yes

yes

yes

yes

no

constant

Carnegie Mellon

II. Conditions for Code Motion

• Correctness: Movement does not change semantics of program

• Performance: Code is not slowed down

• Basic idea: defines once and for all

– control flow: once?
• Code dominates all exits

– other definitions: for all?
• No other definition

– uses of the definition: for all?
• Dominates use or no other reaching defs to use

15-745: Loop Invariance 9

...
A = B + C

...

A = B + C

...

...

OK to move?

E = A
A = B + C

No (moved past exit)

No (doesn’t
dominate use)

Not loop inv.

OK to move?

Carnegie Mellon

Code Motion Algorithm

Given: a set of nodes in a loop

• Compute reaching definitions

• Compute loop invariant computation

• Compute dominators

• Find the exits of the loop (i.e. nodes with successor outside loop)

• Candidate statement for code motion:

– loop invariant

– in blocks that dominate all the exits of the loop

– assign to variable not assigned to elsewhere in the loop

– in blocks that dominate all blocks in the loop that use the variable assigned

• Perform a depth-first search of the blocks

– Move the candidate to the preheader if
all the invariant operations it depends upon have been moved

15-745: Loop Invariance 10

Carnegie Mellon

Code Motion Examples

15-745: Loop Invariance 11

A = B + C E = 3

D = A + 1

header

outside loop

Which statements can be
moved to loop preheader?

E = 2 E = 3

D = A + 1

F = E + 2

A = B + C

Only E=3: only statement
dominating all exits

A=B+C
D=A+1

(Although E=2, E=3 are invariant,
neither is only def of E)

defines once and for all

Carnegie Mellon

More Aggressive Optimizations

• Gamble on: most loops get executed

– When can we relax constraint of dominating all exits?

• Landing pads

While p do loop-body ➔ if p {

preheader

repeat

loop-body

until not p;

}

15-745: Loop Invariance 12

A = B + C

E = A + D

D = …
exit

Can relax if destination not live after loop
& can compute in preheader

w/o causing an exception

Ensures preheader
executes only
if enter loop

Carnegie Mellon

LICM Summary

• Precise definition and algorithm for loop invariant computation

• Precise algorithm for code motion

• Use of reaching definitions and dominators in optimizations

15-745: Loop Invariance 13

Carnegie Mellon

III. Partial Redundancy Elimination

• Sources of Redundancy

– Global common subexpressions

– Loop-invariant expresssions

– Partially redundant expressions

15-745: Loop Invariance 14

Carnegie Mellon

Recall: Global Common Subexpression Elimination

• On every path reaching p,

– expression b+c has been computed

– b, c not overwritten after the expression

• A common expression may have different values on different paths!

15745: Loop Invariance 15

d = b + c

a = b + c

b = 7

d = b + c

a = b + c

b = 7

f = b + c

d = b + c

a = b + c

a = b + c

Which b + c in bottom row is a common subexpression?

yes no yes!

Carnegie Mellon

Loop Invariant Code Motion

• Given an expression (b+c) inside a loop,

– does the value of b+c change inside the loop?

– is the code executed at least once?

15745: Loop Invariance 16

a = t

t = b + c

a = b + c a = b + c

b = read() a = b + c

exit

Can b + c can be moved to header?

yes:

no no

Carnegie Mellon

Partial Redundancy

• Partially Redundant Computation

• Occurrence of expression E at P is partially redundant if E is partially available
there:

– E is evaluated along at least one path to P, with no operands redefined since.

• Partially redundant expression can be eliminated if we can insert computations to
make it fully redundant.

– E.g., insert t1 = a + b in B2

15-745: Loop Invariance 17

t1 = a + b

t2 = a + b

B1 B2

B3

Carnegie Mellon

Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

• As before, partially redundant computation can be eliminated if we insert
computations to make it fully redundant.

• Remaining copies can be eliminated through copy propagation or more complex
analysis of partially redundant assignments.

15-745: Loop Invariance 18

t1 = a + b

a = …

a+b is available

a+b is not available

t1 = t2

a = …

t2 = a + b

After:

Carnegie Mellon

Partial Redundancy Elimination

• Can we place calculations of b+c
such that no path re-executes the same expression?

• Partial Redundancy Elimination (PRE)

– subsumes:

• global common subexpression (full redundancy)

• loop invariant code motion (partial redundancy for loops)

15745: Loop Invariance 19

d = b + c

a = b + c t1 = b + c

d = t1

t1 = b + c

a = t1

Carnegie Mellon

Where Can We Insert Computations?

• Safety: never introduce a new expression along any path.

– Insertion could introduce exception, change program behavior.

– If we can add a new basic block, can insert safely in most cases.

– Solution: insert expression only where it is anticipated, i.e., its value computed at
point p will be used along ALL subsequent paths (more in next lecture)

• Performance: never increase the # of computations on any path.

– Under simple model, guarantees program won’t get worse.

– Reality: might increase register lifetimes, add copies, lose.

15-745: Loop Invariance 20

t1 = a + b

t3 = a + b

Unsafe to insert
a+b here

Carnegie Mellon

Today’s Class

• Lazy Code Motion
– ALSU 9.5.3-9.5.5

15-745: Loop Invariance 21

Friday’s Class

I. Loop-invariant computation

II. Algorithm for code motion

III. Partial redundancy elimination

