

Data Layout Optimization for GPU Programs

Yu Wang, Guanglin Xu
<yuw@andrew.cmu.edu>, <guanglix@andrew.cmu.edu>

Abstract
When targeting GPUs as the substrate, the performance of
data-intensive applications are often sensitive to how well
memory accesses coalesce. Existing techniques for coa-
lescing optimization suffer two major drawbacks: 1. their
limited applicability to only programs with input-
independent array traversals and 2. The performance over-
head caused by synchronizing duplicated data instances.
In this paper, we propose a data layout optimization to min-
imize uncoalesced memory transfers via just-in-time array
traversal profiling and multi-way graph partitioning. Our
technique is applicable to optimize both input-dependent
and independent array access patterns while requiring no
duplication of data. Our results show that the proposed
optimization is able to reduce uncoalesced memory trans-
fers by up to 60% and reduces overall run-time by up to
32%.

1 Introduction

In recent years, Graphics Processing Units (GPUs) have
gained much attention as an inexpensive solution for accel-
erating applications in various domains, such as machine
learning and data mining. To exploit thread-level parallel-
ism, modern GPUs organize software threads into groups
known as warps [9] for execution in SIMD (Single Instruc-
tion Multiple Data) lock-step fashion. The off-chip global
memory1 on GPUs is divided into fixed length regions
called memory segments [2]. During a SIMD load or store,
the threads of a warp concurrently reference a set of
memory locations, or pattern. If the addresses from a pat-
tern point to the same memory segment, their accesses can
be fully combined, or coalesced, as shown in Figure 1a.
The spatial locality among concurrent SIMD accesses from
threads in a warp, known as Inter-Thread Locality (ITL),
determines coalescing performance. In this case, only a
single data fetch is needed at presence of strong ITL. For a
highly irregular memory access pattern, data references are
diverged to different memory segments. Figure 1b demon-
strates a case of poor ITL, where memory accesses are un-
coalesced and have to be serviced by the memory control-
ler separately.

 Uncoalesced off-chip accesses are undesirable for
incurrence of long latency due to serialization of multiple
memory operations. The amount of memory transfers gen-
erated by a coalesced and an uncoalesced pattern can differ
by up to a factor of N, the SIMD width of the platform (32
for Nvidia platforms and 64 for AMD platforms). In con-
trary to the abundance of computation resources, the rela-

1 Note: In this paper, the term memory is used for referring off-chip

DRAM memory of GPU platforms, unless otherwise specified.

tively constrained memory performance of modern GPUs
often can easily becomes a performance bottleneck, which
characterizes the reduction of uncoalesced memory trans-
fers an important optimization problem. Previous works
have attempted to optimize coalescing from mainly two
directions: static array indexing function analysis and data
layout remapping. However, they support a limited subset
of memory access behaviors. Static array indexing function
analysis do not support irregular array traversal in which
the indexing function is input data dependent. Existing
data remapping techniques relies on heavy duplication of
data elements, which incurs significant memory space
overhead and requires costly synchronization of duplicated
instances of a data element after its value has been updated.
Applications such as common graph algorithms, in which
the traversal pattern is data-dependent and vertex/edge data
is updated, cannot be optimized.

 The goal of this work is to determine a data layout that
minimizes uncoalesced memory accesses without duplicat-
ing data instances. As this problem has been theoretically
proven to be NP-complete [2] and cannot be solved effi-
ciently, our optimization technique, Graph-Based Data
Layout Remapping (GBDLR), offers good solution approx-
imation. To summarize our approach, we firstly collect
pattern traces via just-in-time (JIT) profiling. The profiled
traces are used to build a graph for capturing ITL among
data objects. By defining the objective function as mini-
mizing the sum of weighted edge cut, the problem of data
layout remapping can be formulated as the standard prob-
lem of multi-way graph partitioning, and a number of exist-
ing heuristics can be applied to generate high quality solu-
tions.

2 Technical Contributions

 We explore a new GPU program optimization
technique, Graph-Based Data Layout Remapping.
It maps the known NP-complete problem of re-

Figure 1. Examples of memory references with different degrees of

inter-thread data locality. All figures assume 4 threads per warp and 4

objects per memory segment.

Global Mem.

Warp

(a) Fully-coalesced accesses

Global Mem.

Warp

(b) Uncoalesced accesses

mapping array elements for coalescing enhance-
ment to a well-studied graph partitioning problem,
so existing partitioning heuristics can be exploited
to generate high-quality solutions.

 To minimize optimization time, we explore two
different graph formulations: 1. a hyper-graph
formulation which is more precise and 2. a regular
graph formulation which is more efficient to parti-
tion.

 We evaluate different options of graph partition
heuristics.

 We implement a SIMD pattern profiler and pro-
pose a technique called selective pattern sampling,
to reduce the profiling and graph partitioning time.

 We evaluate our proposed optimization scheme
using a sparse-matrix vector multiplication GPU
kernel with multiple sparse matrices as input data.

3 Related Work

In this section, we will examine some representative works
focus to reduce uncoalesced memory accesses for GPU
applications. For the purpose of example illustration,
memory references to an array A is symbolized as A[idx()],
where idx() is the array indexing function, the length of A =
|A| ,and the size of an array element =d. For simplicity, we
assume warp size = w, memory segment size = w×d, and
thread index = tid.

3.1 Data Layout Remapping

Data Layout Remapping (DLR) rearranges the elements of
A to |A|/w segments, such that total degree of inter-segment
span of SIMD patterns are minimized. This is a trivial
problem when each array element is accessed no more than
once, as shown in Figure 2a. In this case, the members of
the Nth segment would simply be {A[idx(n)] | n⊆tid from Nth
warp}. However, SIMD patterns often overlap and the
overlapped array elements are accessed multiple times, as
illustrated in Figure 2b. When overlapping happens, DLR
has been shown to be NP-Complete [2], and finding the
global optimal data layout is impractical.

 In an effort to tackle the complexity of general DLR, a
simple strategy called duplication was proposed by Zhang
et al. [4]. As illustrated in Figure 2c, the duplication algo-
rithm creates a new array A' such that A'[tid]=A[fcn(tid)],
and then all references to A[fcn(tid)] in the program are
replaced with A'[tid]. As array A' is sized to match the
number of threads in a program, the duplication algorithm
guarantees zero non-coalesced memory access at the cost of
large memory footprint overhead. To reduce storage space
requirement, Wu et al. [2] proposes the padding and shar-
ing techniques to reduce the degree of data duplication by
conditionally merging duplicated segments.

3.2 Optimizations for Static Array Indexing Functions

Several static coalescing optimization techniques were pro-
posed for GPU programs with input-independent array in-
dexing functions [3][5]. The gist of these techniques are
similar: classify array indexing function and then apply
corresponding code transforms for optimization. Yang et

al. suggest pre-fetching blocks of matrix data to on-chip
memory in a coalesced fashion to avoid uncoalesced row-
traversals in matrix multiplication [3]. Cuda-Lite [3] trans-
forms the order of nested loops to force warp threads trav-
erse a matrix in column-wise direction so SIMD accesses
can be coalesced perfectly. Optimizations in this category
are efficient as they are fully static and require no run-time
data, but their scope is limited to the memory accesses that
involves no indirection.

4 Graph-Based Data Layout Remapping

The fundamental issue of Data Layout Remapping is its
complexity. Prior works get around solving this problem
by creating duplicated data instances. As pointed out in
section 1, this incurs overhead on both memory space and
performance. In this work, we tackle the complexity by
interpreting DLR as a well studied graph problem in order
to facilitate existing heuristics for approximating the solu-
tions. In this section, we'll examine the two different for-
mulations we proposed for DLR: a more precise hyper-
graph formulation and a standard graph formulation which
can be more efficient to solve.

4.1 Hypergraph Formulation

Given a trace of SIMD patterns, the first step of GBDLR is
to represent ITL relationship among accessed data elements
as a co-occurrence graph, an undirected and edge-
weighted hypergraph. In a co-occurrence graph, a vertex
represents an accessed data element, and a hyperedge spans
across data elements appearing in its corresponding pattern.
The weight of a hyperedge represents the number of times a
SIMD pattern appears in a trace. If a set of data addresses
appear in many pattern, or they co-occur frequently, the
sum of weights for hyperedges that connect them will be
large, which indicates them should be mapped to the same
memory segment. Given a GPU kernel, its input data and
launching configuration, including the number of threads
and warp size, the pattern trace can be collected using a JIT
profiler, which will be discuss more in section 5.
 Given a co-occurrence graph, DLR can cast into a
standard k-way graph partitioning problem by defining
k=|A|/w and the cost function to be ∑(|e|) | e⊆all edges of the
graph, where |e|=number of partitions e spans to multiplied
by its weight. Solving this problem is equivalent to parti-
tioning the accessed array elements to |A|/w segments,
while minimizing the cost. Since cost + number of patterns
is equivalent to the total number of segment transfers, cost
minimization is same as minimizing uncoalesced access. As
a result this hypergraph formulation is precisely equivalent
to the original definition of DLR.

Figure 2. Examples to illustrate the data grouping problem with/

without data overlaying and the duplication algorithm

Threads: 0123 4567

Accessed Obj: abcd efgh

Orig.Layout: aiej bkfl cmgn dohp

New Layout: abcd efgh ijkl mnop

(a) Data grouping without data overlaying

Threads: 0123 4567

Accessed Obj: abcd defg

Orig Layout: aiej bkfl cmgn dohp

New Layout: abcd defg hijk llno

(b) Data grouping with overlapped object d:

mapping inferences conflict as d is mapped to

2 different locations1

Threads: 0123 4567 Original Layout: aiej bkfl cmgn dohp

Accessed Objects: abcd cdef Dup. Array: abcd cdef

(c)Data layout remapping using the duplication algorithm

 Figure 3a shows the co-occurrence graph and the data
remapping result using our hypergraph formulation for a
simple trace of 6 patterns. Note the partitioning cost (2)
plus the number of patterns (6) is equivalent the total
memory segment transfer (8).

4.2 Standard Graph Formulation

Although the hypergraph version of GBDLR guarantees a
precise mapping to the original DLR definition, hypergraph
partitioning is often more expensive than standard graph
partitioning. For input-data-dependent array traversals,
GBDLR cannot be performed until SIMD pattern traces are
generated by JIT profiling, which makes the performance
of graph partitioning important. This fact motivates us to
reformulate GBDLR using standard graphs.

 When using standard graph formulation, a co-
occurrence graph, is a complete, undirected and edge-
weighted graph. Each edge connecting two vertices is
weighted by their co-occurrence frequency, where co-
occurrence is defined as an instance that two array elements
simultaneously occur in the same SIMD pattern. Co-
occurrence frequency measures how often two array ele-
ments co-occur and captures as potential performance bene-
fit if two data elements are mapped to the same memory
segment. If two elements never co-occur, the edge connect-
ing them is weighted by zero.

 With the new co-occurence graph definition, DLR can
be approximated with the same k-way graph partitioning
from the hypergraph formulation. The only change re-
quired is to redefine the cost function as the sum of edge
cut weights. This specific type of k-way graph partitioning
is known as Minimum K-Cut [10]. Minimum K-Cut is an
important problem in domains such as circuit placement,
and many known heuristics can be employed to generate
high quality solutions.

 Figure 3b shows the co-occurrence graph and the data
remapping result using our standard graph formulation for
the same trace used in figure 3a. It produces the same lay-
out mapping in this specific case. However, as the formula-
tion is less precise, the final cost cannot be directly used to
calculate the number of segment transfers.

5 SIMD Pattern Profiler

5.1 Requirements

As a precondition to optimize array access of an OpenCL
program, a profiler extracts SIMD patterns from the source

code. In this section, we’ll use an example to illustrate the
requirement of our profiler. SIMD patterns are divided into
two categories. Patterns in the first category can be deter-
mined in compile time because relevant information is
ready before running the program. The accesses to mrp in
Figure 4 correspond to one such case. On the other hand,
patterns in the second category depend on input data and
couldn’t be determined until runtime. The accesses to A in
Figure 4 belong to the latter category.

1: unsigned int row = get_global_id(0);

2: if (row < m) {

3: float sum = 0;

4: for (unsigned int i = 0; i < matrixRowSize[row]; i++) {

5: unsigned int j = mrp[row] + i;

6: sum += A[j] * vectorB[adj[j]];

7: }

8: resultVector[row] = sum;

9: }

Figure 4: OpenCL kernel of sparse matrix vector multiplication

 The SIMD patterns of mrp and A which our profiler aims
to harvest are shown in table 1 and table 2 respectively. In
both tables, each column represents array accesses for a
thread-id, while each row represents array accesses for a
loop-id. Since the index of mrp points to the thread-id (by
returning from get_global_id(0)), it’s value increments
along the thread space horizontally and keeps unchanged
along the iteration space vertically. For A, the index is indi-
rect and requires values stored in array mrp.

Table 1: SIMD Patterns of mrp in a warp

 Thread 0 Thread 1 … Thread w2

Loop 0 0 1 … w

Loop 1 0 1 … w

… … … … …

Loop n 0 1 … w

2 w refers to the warp size. It is 32 in Nvidia devices and 64 in AMD devices.

Figure 3. An example of GBDLR

The original layout requires 12 memory accesses. As both the hypergraph and the regular graph formulations produce the same partitioning result, they

produced the same data layout , which requires only 8 segment transfers. Assume 4 threads per warp and 4 objects per memory segment.

c

d

a

e

b

f

22

2

4

3

2

2

1

1

1

1

Threads: 0123 4567

SIMD mem access1: bbbe abef

SIMD mem access2: cdca abef

SIMD mem access3: cdcd bbec

Original Layout: aceg bfdh

GBDLR layout: abef cdgh

1

f

a

d

c

e

b
2

1

1
1

1

(a) Hypergraph formulation (b) Regular graph formulation

Table 2: SIMD Patterns of A in a warp

 Thread 0 Thread 1 … Thread w

Loop 0 mrp[0]+0 mrp[1]+0 … mrp[w]+0

Loop 1 mrp[0]+1 mrp[1]+1 … mrp[w]+1

… … … … …

Loop n mrp[0]+n mrp[1]+n … mrp[w]+n

5.2 Profiler Design

Our profiler is based on the Clang tooling framework.
Clang exposes C++ classes to read the Abstract Syntax
Tree (AST) of OpenCL kernel. AST is a structural repre-
sentation of source code, which facilitates extracting useful
information relevant with SIMD patterns.

 Information extraction via AST boils down to walking
along the syntax tree. For example, once an array access
occurs as an ArraySubscriptExpr node in the AST, the base
name of the array can be retrieved via visiting an Implicit-
CastExpr node followed by a DeclRefExpr node. It is triv-
ial to detect if an array access is a write or not by checking
if this access is in the LHS of a “=”, “+=”, “-=”, “*=” or
“/=” operator node. However, calculating the value of ar-
ray index is non-trivial. For indices that can be determined
in compile time, they usually require the use of thread-id
and loop-id. For other array indexing schemes that rely on
runtime data, knowledge from additional input in runtime is
inevitable, and the patterns has to be collected in JIT fash-
ion.

5.3 Optimizing Profiler

For parsing in compile time, performance is less concerned.
However, the performance of JIT profiling is critical. In the
following sections, two kinds of optimizations are intro-
duced to reduce the execution time of the profiler.

5.3.1 General Optimization

With a naïve profiler implementation, calculating the value
of an array index always requires walking through the AST.
Its overhead can be significant when the number of nodes
being walked is large. For those array indices whose value
is independent with loop-id, the value can be stored in a
lookup table so future calculation for obtaining the same
value can be eliminated. Intermediate results relevant to the
value can also be stored at a lookup table. Currently we
have employed value lookup tables for kernel function pa-
rameters, thread-id, for loop parent node and array base
name. They reduce 65% of the runtime in our amazon
benchmark.

5.3.2 Domain-specific Optimization

Domain-specific optimization is achieved by selectively
sampling array indices. By omitting less important array
indices, it reduces not only the execution time of the profil-
er but also the inference graph size for graph-based DLM.
Considering the length of SIMD pattern as the number of
array accesses in that pattern, a SIMD pattern with smaller
length is called a “scatter pattern” while that with larger
length is called a “dense pattern”. In the context of optimiz-

ing memory access of uncoalesced SIMD patterns, a scatter
pattern contains fewer memory addresses and the degree of
inter-segment accesses is likely to be low even without op-
timization. As a result, omitting scatter patterns has minor
impact on the quality of the final data layout. While it is
hard to predict SIMD patterns for general programs, pat-
terns from some domain program can be predictable. In the
example of Figure 4, some threads can terminate relatively
early to its neighboring threads from the same warp due to
the differences of the row size values, so SIMD pattern
lengths often decreases when loop-id increases as warp
divergence happens. To exploit this fact for reducing the
size of generated pattern traces, we employ a technique
called selective sampling which discards SIMD patterns
with lengths under certain thresholds. This approach effec-
tively filters short patterns from the ending loop iterations
and improves run-time performances for our JIT profiler as
well as data layout optimizer.

6 Evaluation

Table 3 summarizes the methodology used to evaluate our
proposed coalescing optimization techniques. We choose
Sparse Matrix Vector Multiplication as our GPU bench-
mark as graph structures are often stored in sparse matrix
format, so the evaluation results is representative general
graph algorithms such as pageRank. We choose 3 standard
sparse matrix datasets with different sizes and sparseness
for our experiments. We also perform study on how selec-
tive pattern sampling will impact the data partitioning and
GPU programs.

Table 3: Methodology

Platform for pattern profiling Intel i7 4770k

32GB DDR3 DRAM

Platform for graph partitioning and

GBDLR performance evaluation

Intel i7 3730qm 2.40 GHz

16GB DDR3 DRAM

Nvidia GTX 680m

GPU benchmark OpenCL Sparse-matrix-vector multi-

plication

Input data 3 Standard sparse matrices:

1. erdos-10k: 10k vertices

2. bara-40k: 40k vertices

3. Amazon: 3 million vertices

Selective pattern sampling configu-

ration

Tested 2 thresholds:

1.Filter pattern length less than 4

2.Filter pattern length less than 16

Graph partitioner Hypergraph: hMetis

Standard graph: Kernighan-Lin (KL)

and Fiduccia-Mattheyses-Sanchis

(FMS)

6.1 Effectiveness of GBDLR

Figure 5.b demonstrates the effectiveness of GBDLR on
reducing uncoalesced accesses. Our KL implementation
cannot finish partitioning the dataset Amazon before the
project deadline, thus the result is not shown. On average,

with hypergraph formulation, the amount of memory seg-
ment transfers are reduced by 58% across the three input
datasets. With standard graph formulation, the GBDLR
performs slightly worse as it reduces segment transfers by
an averaged 51%. Figure 5.a shows the runtime of Sparse
Matrix Vector Multiplication GPU kernel after GBDLR
compare to the un-optimized baseline. On average,
GBDLR delivers 16% and 11% speedups for hypergraph
and standard graph respectively.

6.2 Practicality and Future work

Despite that GBDLR successfully demonstrates its capabil-
ity to improve GPU coalescing performance, the partition-
ing of Co-Occurrence Graph turns out to be a major issue.
For erdos10k and bara40k datasets, KL took 543 millisec-
onds and 6.7 seconds to complete partitioning respectively,
while the GPU kernel only take couple milliseconds to exe-
cute. The FMS practitioner is faster by approximately a
factor of 2, but it still much slower than the GPU program
run-time. hMetis for hypergraph partitioning runs even
slower than KL across all test cases. For the Amazon da-
taset, it took almost three hours to complete the partitioning
tasks. Selective Pattern Sampling with threshold of 16 does
improve the partitioning time by 44% in this case, but it is
still too slow to for the standard of JIT optimization. For-
tunately, there are graph algorithms that requires repetitive-
ly executing the same kernel until the results stabilizes,
such as pageRank and 3D stereo matching, which amortizes
the expensive optimization of GBDLR with long program
run-time. Until we study those cases, it is still too early to
judge the effectiveness of our optimization approach.

7 Conclusion

Reducing uncoalesced data references is critical for the
performance of memory-intensive GPU applications.
However, existing coalescing optimizations cover a very
limited subset of memory access behaviors. To address this
problem, we propose Graph-Based Data Layout Re-
mapping. By mapping the NP-complete problem of rear-
ranging array elements to minimize uncoalesced memory
references to the standard K-way graph portioning problem,
known heuristics for solution approximation can be facili-
tated. Our evaluation suggests that GBDLR can indeed
improve coalescing performance for GPU programs. How-

ever, the heavy overhead of graph partitioning prevents this
technique to be use for JIT optimization.

References

[1] E. Enurvitadhi et al. “Compiling Graph Algorithms for Accelerator Platforms,”

submitted to Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2014.

 [2] B. Wu et al. “Complexity Analysis and Algorithm Design for Reorganizing Data

to Minimize Non-Coalesced Memory Accesses on GPU,” in Principles and Prac-

tice of Parallel Programming (PPOP), 2013.

[3] Y. Yang et al. “A GPGPU Compiler for Memory Optimization and Parallelism

Management,” in Programming Language Design and Implementation (PLDI),

2010.

[4] E. Zhang et al. “On-the-fly elimination of dynamic irregularities for gpu compu-

ting,” in Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), 2011.

[5] S. Ueng et al. “CUDA-Lite: Reducing GPU Programming complexity,” in Lan-

guages and Compilers for Parallel Computing (LCPC), 2008

[6] S. Che, “Dymaxion: Optimizing Memory Access Patterns for Heterogeneous

Systems,” in High Performance Computing, Networking, Storage and Analysis,

2011.

[7] H. Eslami et al. “A GPU Implementation of Tiled Belief Propagation on Markov

Random Fields,” in MEMOCODE, 2013.

[8] C. Schulz, High Quality Graph Partitioning. Berlin, Germany, epubli GmbH

2013, pp. 39-41.

[9] Nvidia Co. "Nvidia OpenCL Programming Guide, " http://www.nvidia.com/cotent/

cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf, 2009

[10] W. Kernighan et al., "An efficient heuristic procedure for partitioning graphs,"

Bell Systems Technical Journal 49, 1970, Pages 291–307

Contributions:

Yu Wang 50%

Guanglin Xu 50%

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 p

ro
gr

am
 R

u
n

 T
im

e

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 A

m
o

u
n

t
r

o
f

Se
gm

e
n

t
Tr

an
sf

e
rs

base

hyperGraph-hmetis

graph-KL

graph-FMS

 (a) (b)

Figure 5. (a) Normalized run-time and (b) Normalized memory transfers for sparse matrix vector multiplication with GBDLR optimization

