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Abstract 
When targeting GPUs as the substrate, the performance of 
data-intensive applications are often sensitive to how well 
memory accesses coalesce.  Existing techniques for coa-
lescing optimization suffer two major drawbacks: 1. their 
limited applicability to only programs with input-
independent array traversals and 2. The performance over-
head caused by synchronizing duplicated data instances.   
In this paper, we propose a data layout optimization to min-
imize uncoalesced memory transfers via just-in-time array 
traversal profiling and multi-way graph partitioning.  Our 
technique is applicable to optimize both input-dependent 
and independent array access patterns while requiring no 
duplication of data.  Our results show that the proposed 
optimization is able to reduce uncoalesced memory trans-
fers by up to 60% and reduces overall run-time by up to 
32%. 

1 Introduction 

In recent years, Graphics Processing Units (GPUs) have 
gained much attention as an inexpensive solution for accel-
erating applications in various domains, such as machine 
learning and data mining.  To exploit thread-level parallel-
ism, modern GPUs organize software threads into groups 
known as warps [9] for execution in SIMD (Single Instruc-
tion Multiple Data) lock-step fashion. The off-chip global 
memory1 on GPUs is divided into fixed length regions 
called memory segments [2].  During a SIMD load or store, 
the threads of a warp concurrently reference a set of 
memory locations, or pattern.  If the addresses from a pat-
tern point to the same memory segment, their accesses can 
be fully combined, or coalesced, as shown in Figure 1a.  
The spatial locality among concurrent SIMD accesses from 
threads in a warp, known as Inter-Thread Locality (ITL), 
determines coalescing performance.  In this case, only a 
single data fetch is needed at presence of strong ITL.  For a 
highly irregular memory access pattern, data references are 
diverged to different memory segments. Figure 1b demon-
strates a case of poor ITL, where memory accesses are un-
coalesced and have to be serviced by the memory control-
ler separately. 

 Uncoalesced off-chip accesses are undesirable for 
incurrence of long latency due to serialization of multiple 
memory operations.  The amount of memory transfers gen-
erated by a coalesced and an uncoalesced pattern can differ 
by up to a factor of N, the SIMD width of the platform (32 
for Nvidia platforms and 64 for AMD platforms).  In con-
trary to the abundance of computation resources, the rela-

                                                           
1 Note: In this paper, the term memory is used for referring off-chip 

DRAM memory of GPU platforms, unless otherwise specified.  

tively constrained memory performance of modern GPUs 
often can easily becomes a performance bottleneck, which 
characterizes the reduction of uncoalesced memory trans-
fers an important optimization problem.  Previous works 
have attempted to optimize coalescing from mainly two 
directions: static array indexing function analysis and data 
layout remapping.  However, they support a limited subset 
of memory access behaviors.  Static array indexing function 
analysis do not support irregular array traversal in which 
the indexing function is input data dependent.  Existing 
data remapping techniques relies on heavy duplication of 
data elements, which incurs significant memory space 
overhead and requires costly synchronization of duplicated 
instances of a data element after its value has been updated.  
Applications such as common graph algorithms, in which 
the traversal pattern is data-dependent and vertex/edge data 
is updated, cannot be optimized. 

 The goal of this work is to determine a data layout that 
minimizes uncoalesced memory accesses without duplicat-
ing data instances. As this problem has been theoretically 
proven to be NP-complete [2] and cannot be solved effi-
ciently, our optimization technique, Graph-Based Data 
Layout Remapping (GBDLR), offers good solution approx-
imation.  To summarize our approach, we firstly collect 
pattern traces via just-in-time (JIT) profiling.  The profiled 
traces are used to build a graph for capturing ITL among 
data objects.  By defining the objective function as mini-
mizing the sum of weighted edge cut, the problem of data 
layout remapping can be formulated as the standard prob-
lem of multi-way graph partitioning, and a number of exist-
ing heuristics can be applied to generate high quality solu-
tions. 

2 Technical Contributions 

 We explore a new GPU program optimization 
technique, Graph-Based Data Layout Remapping. 
It maps the known NP-complete problem of re-

Figure 1. Examples of memory references with different degrees of 

inter-thread data locality. All figures assume 4 threads per warp and 4 

objects per memory segment. 
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mapping array elements for coalescing enhance-
ment to a well-studied graph partitioning problem, 
so existing partitioning heuristics can be exploited 
to generate high-quality solutions.  

 To minimize optimization time, we explore two 
different graph formulations: 1. a hyper-graph 
formulation which is more precise and 2. a regular 
graph formulation which is more efficient to parti-
tion. 

 We evaluate different options of graph partition 
heuristics. 

 We implement a SIMD pattern profiler and pro-
pose a technique called selective pattern sampling, 
to reduce the profiling and graph partitioning time.  

 We evaluate our proposed optimization scheme 
using a sparse-matrix vector multiplication GPU 
kernel with multiple sparse matrices as input data. 

3 Related Work 

In this section, we will examine some representative works 
focus to reduce uncoalesced memory accesses for GPU 
applications. For the purpose of example illustration, 
memory references to an array A is symbolized as A[idx()], 
where idx() is the array indexing function, the length of A = 
|A| ,and the size of an array element =d.  For simplicity, we 
assume warp size = w, memory segment size = w×d, and 
thread index = tid. 

3.1 Data Layout Remapping 

Data Layout Remapping (DLR) rearranges the elements of 
A to |A|/w segments, such that total degree of inter-segment 
span of SIMD patterns are minimized.  This is a trivial 
problem when each array element is accessed no more than 
once, as shown in Figure 2a.  In this case, the members of 
the Nth segment would simply be {A[idx(n)] | n⊆tid from Nth 
warp}.  However, SIMD patterns often overlap and the 
overlapped array elements are accessed multiple times, as 
illustrated in Figure 2b. When overlapping happens, DLR 
has been shown to be NP-Complete [2], and finding the 
global optimal data layout is impractical. 

 In an effort to tackle the complexity of general DLR, a 
simple strategy called duplication was proposed by Zhang 
et al. [4]. As illustrated in Figure 2c, the duplication algo-
rithm creates a new array A' such that A'[tid]=A[fcn(tid)], 
and then all references to A[fcn(tid)] in the program are 
replaced with A'[tid].  As array A'  is sized to match the 
number of threads in a program, the duplication algorithm 
guarantees zero non-coalesced memory access at the cost of 
large memory footprint overhead.  To reduce storage space 
requirement, Wu et al. [2] proposes the padding and shar-
ing techniques to reduce the degree of data duplication by 
conditionally merging duplicated segments.     

3.2 Optimizations for Static Array Indexing Functions 

Several static coalescing optimization techniques were pro-
posed for GPU programs with input-independent array in-
dexing functions [3][5]. The gist of these techniques are 
similar: classify array indexing function and then apply 
corresponding code transforms for optimization.  Yang et 

al. suggest pre-fetching blocks of matrix data to on-chip 
memory in a coalesced fashion to avoid uncoalesced row-
traversals in matrix multiplication [3]. Cuda-Lite [3] trans-
forms the order of nested loops to force warp threads trav-
erse a matrix in column-wise direction so SIMD accesses 
can be coalesced perfectly.  Optimizations in this category 
are efficient as they are fully static and require no run-time 
data, but their scope is limited to the memory accesses that 
involves no indirection. 

4 Graph-Based Data Layout Remapping 

The fundamental issue of Data Layout Remapping is its 
complexity.  Prior works get around solving this problem 
by creating duplicated data instances.  As pointed out in 
section 1, this incurs overhead on both memory space and 
performance.  In this work, we tackle the complexity by 
interpreting DLR as a well studied graph problem in order 
to facilitate existing heuristics for approximating the solu-
tions.  In this section, we'll examine the two different for-
mulations we proposed for DLR: a more precise hyper-
graph formulation and a standard graph formulation which 
can be more efficient to solve. 

4.1 Hypergraph Formulation 

Given a trace of SIMD patterns, the first step of GBDLR is 
to represent ITL relationship among accessed data elements 
as a co-occurrence graph, an undirected and edge-
weighted hypergraph.  In a co-occurrence graph, a vertex 
represents an accessed data element, and a hyperedge spans 
across data elements appearing in its corresponding pattern.  
The weight of a hyperedge represents the number of times a 
SIMD pattern appears in a trace.  If a set of data addresses 
appear in many pattern, or they co-occur frequently, the 
sum of weights for hyperedges that connect them will be 
large, which indicates them should be mapped to the same 
memory segment.  Given a GPU kernel, its input data and 
launching configuration, including the number of threads 
and warp size, the pattern trace can be collected using a JIT 
profiler, which will be discuss more in section 5. 
 Given a co-occurrence graph, DLR can cast into a 
standard k-way graph partitioning problem by defining 
k=|A|/w and the cost function to be ∑(|e|) | e⊆all edges of the 
graph, where |e|=number of partitions e spans to multiplied 
by its weight.  Solving this problem is equivalent to parti-
tioning the accessed array elements to |A|/w segments, 
while minimizing the cost. Since cost + number of patterns 
is equivalent to the total number of segment transfers, cost 
minimization is same as minimizing uncoalesced access. As 
a result this hypergraph formulation is precisely equivalent 
to the original definition of DLR. 

Figure 2. Examples to illustrate the data grouping problem with/ 

without data overlaying and the duplication algorithm 

Threads: 0123 4567

Accessed Obj: abcd efgh

Orig.Layout: aiej bkfl cmgn dohp

New Layout: abcd efgh ijkl mnop

(a) Data grouping without data overlaying

Threads:           0123 4567

Accessed Obj: abcd defg

Orig Layout: aiej bkfl cmgn dohp

New Layout: abcd defg hijk llno

(b) Data grouping with overlapped object d: 

mapping inferences conflict as d is mapped to 

2 different locations1

Threads: 0123 4567 Original Layout: aiej bkfl cmgn dohp

Accessed Objects: abcd cdef Dup. Array: abcd cdef

(c)Data layout remapping using the duplication algorithm 



 Figure 3a shows the co-occurrence graph and the data 
remapping result using our hypergraph formulation for a 
simple trace of 6 patterns.  Note the partitioning cost (2) 
plus the number of patterns (6) is equivalent the total 
memory segment transfer (8).     

4.2 Standard Graph Formulation 

Although the hypergraph version of GBDLR guarantees a 
precise mapping to the original DLR definition, hypergraph 
partitioning is often more expensive than standard graph 
partitioning.  For input-data-dependent array traversals, 
GBDLR cannot be performed until SIMD pattern traces are 
generated by JIT profiling, which makes the performance 
of graph partitioning important.  This fact motivates us to 
reformulate GBDLR using standard graphs.  

 When using standard graph formulation, a co-
occurrence graph, is a complete, undirected and edge-
weighted graph.  Each edge connecting two vertices is 
weighted by their co-occurrence frequency, where co-
occurrence is defined as an instance that two array elements 
simultaneously occur in the same SIMD pattern.  Co-
occurrence frequency measures how often two array ele-
ments co-occur and captures as potential performance bene-
fit if two data elements are mapped to the same memory 
segment.  If two elements never co-occur, the edge connect-
ing them is weighted by zero.   

 With the new co-occurence graph definition, DLR can 
be approximated with the same k-way graph partitioning 
from the hypergraph formulation.  The only change re-
quired is to redefine the cost function as the sum of edge 
cut weights.  This specific type of k-way graph partitioning 
is known as Minimum K-Cut [10]. Minimum K-Cut is an 
important problem in domains such as circuit placement, 
and many known heuristics can be employed to generate 
high quality solutions. 

 Figure 3b shows the co-occurrence graph and the data 
remapping result using our standard graph formulation for 
the same trace used in figure 3a.  It produces the same lay-
out mapping in this specific case.  However, as the formula-
tion is less precise, the final cost cannot be directly used to 
calculate the number of segment transfers. 

5 SIMD Pattern Profiler 

5.1 Requirements 

As a precondition to optimize array access of an OpenCL 
program, a profiler extracts SIMD patterns from the source 

code. In this section, we’ll use an example to illustrate the 
requirement of our profiler. SIMD patterns are divided into 
two categories. Patterns in the first category can be deter-
mined in compile time because relevant information is 
ready before running the program. The accesses to mrp in 
Figure 4 correspond to one such case. On the other hand, 
patterns in the second category depend on input data and 
couldn’t be determined until runtime. The accesses to A in 
Figure 4 belong to the latter category. 

1: unsigned int row = get_global_id(0); 

2: if ( row < m ) { 

3:     float sum = 0; 

4:     for (unsigned int i = 0; i < matrixRowSize[row]; i++) { 

5:         unsigned int j = mrp[row] + i; 

6:         sum += A[j] * vectorB[ adj[j] ]; 

7:     } 

8:     resultVector[row] = sum; 

9: } 

Figure 4: OpenCL kernel of sparse matrix vector multiplication 

    The SIMD patterns of mrp and A which our profiler aims 
to harvest are shown in table 1 and table 2 respectively. In 
both tables, each column represents array accesses for a 
thread-id, while each row represents array accesses for a 
loop-id.  Since the index of mrp points to the thread-id (by 
returning from get_global_id(0)),  it’s value increments 
along the thread space horizontally and keeps unchanged 
along the iteration space vertically. For A, the index is indi-
rect and requires values stored in array mrp. 

Table 1: SIMD Patterns of mrp in a warp 

 Thread 0 Thread 1 … Thread w2 

Loop 0 0 1 … w 

Loop 1 0 1 … w 

… … … … … 

Loop n 0 1 … w 

                                                           

2 w refers to the warp size. It is 32 in Nvidia devices and 64 in AMD devices. 

Figure 3. An example of GBDLR  

The original layout requires 12 memory accesses. As both the hypergraph and the regular graph formulations produce the same partitioning result, they 

produced the same data layout , which requires only 8 segment transfers.  Assume 4 threads per warp and 4 objects per memory segment.  

 

c

d

a

e

b

f

22

2

4

3

2

2

1

1

1

1

Threads: 0123 4567

SIMD mem access1: bbbe abef

SIMD mem access2: cdca abef

SIMD mem access3: cdcd bbec

Original Layout: aceg bfdh

GBDLR layout: abef cdgh

1

f

a

d

c

e

b
2

1

1
1

1

(a)  Hypergraph formulation                                          (b) Regular graph formulation



 

Table 2: SIMD Patterns of A in a warp 

 Thread 0 Thread 1 … Thread w 

Loop 0 mrp[0]+0 mrp[1]+0 … mrp[w]+0 

Loop 1 mrp[0]+1 mrp[1]+1 … mrp[w]+1 

… … … … … 

Loop n mrp[0]+n mrp[1]+n … mrp[w]+n 

5.2 Profiler Design 

Our profiler is based on the Clang tooling framework. 
Clang exposes C++ classes to read the Abstract Syntax 
Tree (AST) of OpenCL kernel. AST is a structural repre-
sentation of source code, which facilitates extracting useful 
information relevant with SIMD patterns. 

      Information extraction via AST boils down to walking 
along the syntax tree. For example, once an array access 
occurs as an ArraySubscriptExpr node in the AST, the base 
name of the array can be retrieved via visiting an Implicit-
CastExpr node followed by a DeclRefExpr node.  It is triv-
ial to detect if an array access is a write or not by checking 
if this access is in the LHS of a “=”, “+=”, “-=”, “*=” or 
“/=” operator node.  However, calculating the value of ar-
ray index is non-trivial. For indices that can be determined 
in compile time, they usually require the use of thread-id 
and loop-id. For other array indexing schemes that rely on 
runtime data, knowledge from additional input in runtime is 
inevitable, and the patterns has to be collected in JIT fash-
ion. 

 
5.3 Optimizing Profiler 

For parsing in compile time, performance is less concerned. 
However, the performance of JIT profiling is critical. In the 
following sections, two kinds of optimizations are intro-
duced to reduce the execution time of the profiler. 
 
5.3.1 General Optimization 

With a naïve profiler implementation, calculating the value 
of an array index always requires walking through the AST. 
Its overhead can be significant when the number of nodes 
being walked is large. For those array indices whose value 
is independent with loop-id, the value can be stored in a 
lookup table so future calculation for obtaining the same 
value can be eliminated. Intermediate results relevant to the 
value can also be stored at a lookup table. Currently we 
have employed value lookup tables for kernel function pa-
rameters, thread-id, for loop parent node and array base 
name. They reduce 65% of the runtime in our amazon 
benchmark. 

5.3.2 Domain-specific Optimization 

Domain-specific optimization is achieved by selectively 
sampling array indices.  By omitting less important array 
indices, it reduces not only the execution time of the profil-
er but also the inference graph size for graph-based DLM. 
Considering the length of SIMD pattern as the number of 
array accesses in that pattern, a SIMD pattern with smaller 
length is called a “scatter pattern” while that with larger 
length is called a “dense pattern”. In the context of optimiz-

ing memory access of uncoalesced SIMD patterns, a scatter 
pattern contains fewer memory addresses and the degree of 
inter-segment accesses is likely to be low even without op-
timization. As a result, omitting scatter patterns has minor 
impact on the quality of the final data layout. While it is 
hard to predict SIMD patterns for general programs, pat-
terns from some domain program can be predictable. In the 
example of Figure 4, some threads can terminate relatively 
early to its neighboring threads from the same warp due to 
the differences of the row size values, so SIMD pattern 
lengths often decreases when loop-id increases as warp 
divergence happens. To exploit this fact for reducing the 
size of generated pattern traces, we employ a technique 
called selective sampling which discards SIMD patterns 
with lengths under certain thresholds.  This approach effec-
tively filters short patterns from the ending loop iterations 
and improves run-time performances for our JIT profiler as 
well as data layout optimizer. 

 

6 Evaluation 

Table 3 summarizes the methodology used to evaluate our 
proposed coalescing optimization techniques. We choose 
Sparse Matrix Vector Multiplication as our GPU bench-
mark as graph structures are often stored in sparse matrix 
format, so the evaluation results is representative general 
graph algorithms such as pageRank.  We choose 3 standard 
sparse matrix datasets with different sizes and sparseness 
for our experiments. We also perform study on how selec-
tive pattern sampling will impact the data partitioning and 
GPU programs. 

Table 3: Methodology 

Platform for pattern profiling Intel i7 4770k 

32GB DDR3 DRAM 

Platform for graph partitioning and 

GBDLR performance evaluation 

Intel i7 3730qm 2.40 GHz 

16GB DDR3 DRAM 

Nvidia GTX 680m 

 

GPU benchmark  OpenCL Sparse-matrix-vector multi-

plication 

Input data 3 Standard sparse matrices: 

1. erdos-10k: 10k vertices 

2. bara-40k: 40k vertices 

3. Amazon: 3 million vertices 

Selective  pattern sampling configu-

ration 

Tested 2 thresholds: 

1.Filter pattern length less than 4 

2.Filter pattern length less than 16 

Graph partitioner Hypergraph: hMetis 

Standard graph: Kernighan-Lin (KL) 

and Fiduccia-Mattheyses-Sanchis 

(FMS) 

 

6.1 Effectiveness of GBDLR   

Figure 5.b demonstrates the effectiveness of GBDLR on 
reducing uncoalesced accesses. Our KL implementation 
cannot finish partitioning the dataset Amazon before the 
project deadline, thus the result is not shown.  On average, 



with hypergraph formulation, the amount of memory seg-
ment transfers are reduced by 58% across the three input 
datasets.  With standard graph formulation, the GBDLR 
performs slightly worse as it reduces segment transfers by 
an averaged 51%.  Figure 5.a shows the runtime of Sparse 
Matrix Vector Multiplication GPU kernel after GBDLR 
compare to the un-optimized baseline.  On average, 
GBDLR delivers 16% and 11% speedups for hypergraph 
and standard graph respectively. 

6.2 Practicality and Future work 

Despite that GBDLR successfully demonstrates its capabil-
ity to improve GPU coalescing performance, the partition-
ing of Co-Occurrence Graph turns out to be a major issue.  
For erdos10k and bara40k datasets, KL took 543 millisec-
onds and 6.7 seconds to complete partitioning respectively, 
while the GPU kernel only take couple milliseconds to exe-
cute.  The FMS practitioner is faster by approximately a 
factor of 2, but it still much slower than the GPU program 
run-time.  hMetis for hypergraph partitioning runs even 
slower than KL across all test cases.  For the Amazon da-
taset, it took almost three hours to complete the partitioning 
tasks.  Selective Pattern Sampling with threshold of 16 does 
improve the partitioning time by 44% in this case, but it is 
still too slow to for the standard of JIT optimization.  For-
tunately, there are graph algorithms that requires repetitive-
ly executing the same kernel until the results stabilizes, 
such as pageRank and 3D stereo matching, which amortizes 
the expensive optimization of GBDLR with long program 
run-time. Until we study those cases, it is still too early to 
judge the effectiveness of our optimization approach. 

7 Conclusion  

Reducing uncoalesced data references is critical for the 
performance of memory-intensive GPU applications.  
However, existing coalescing optimizations cover a very 
limited subset of memory access behaviors.  To address this 
problem, we propose Graph-Based Data Layout Re-
mapping. By mapping the NP-complete problem of rear-
ranging array elements to minimize uncoalesced memory 
references to the standard K-way graph portioning problem, 
known heuristics for solution approximation can be facili-
tated.  Our evaluation suggests that GBDLR can indeed 
improve coalescing performance for GPU programs. How-

ever, the heavy overhead of graph partitioning prevents this 
technique to be use for JIT optimization. 
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Figure 5. (a) Normalized run-time and (b) Normalized memory transfers for sparse matrix vector multiplication with GBDLR optimization  

 

 


