
15-780: Graduate AI
Homework Assignment #2 Solutions

Out: February 12, 2015
Due: February 25, 2015

Collaboration Policy: You may discuss the problems with others, but you must write
all code and your writeup independently.

Turning In: Please email your assignment by the due date to shayand@cs.cmu.edu and
vdperera@cs.cmu.edu. Make sure your solution to each problem is on a separate page. If
your solutions are handwritten, then please take photos or scan them and make sure they
are legible and clear. Please submit your code in separate files so we can easily run them

1 Cryptoarithmethic

Solve the cryptarithmethic problem shown in Fig. 1 by hand, using the strategy of back-
tracking with forward checking and the MRV and least-constraining-value heuristic.

T W O
+ T W O

F O U R

(a)

F T U OW R

C3 C2 C1

(b)

Figure 1: (a) The cryptarithmethic problem. (b) The constraint hypergraph.

In a cryptarithmethic problem each letter stands for a distinct digit; the aim is to find
a substitution of digits for letters such that the resulting sum is arithmetically correct, with
the added restriction that no leading zeros are allowed.

To help you out in Fig.1 you can see the constraint hypergraph for the cryptoarithmethic
problem, showing the Aldiff constraint (square box on top) as well as the column addition

1

mailto:shayand@cs.cmu.edu
mailto:vdperera@cs.cmu.edu

constraints (four square box in the middle). The variables C1,C2 and C3 represent the carry
digits for the three column.

An Aldiff constraint is a global constraint which says that all of the variable involved in
the constraint must have different value.

The following solution was provided by Revanth Bhattaram (with slight modifications):

For this problem,we use the Minimum Remaining Value Heuristic to choose a variable and
the Least Constraining Value heuristic to assign values to the chosen variables.
The constraints are :

O +O = R + 10 ∗ C1

C1 +W +W = U + 10 ∗ C2

C2 + T + T = O + 10 ∗ C3

F = C3

The main variables here are F, T, U,W,R,O and they all must have different assigned values.
In addition, C1, C2, C3 represent the carries that depend on the assigned values. The carries
can take the values {0,1}.
Another constraint for this problem is that the number don’t have any leading zeros. This
implies that the variables F, T can’t take the value 0. The backtracking search algorithm
runs as follows :

• A quick look at the constraints shows that the variable F can only take the value 1,
since C3 can be 0 or 1 and F = C3 and F can’t be equal to 0. Thus, we set F = 1 and
consequently C3 = 1.

F = 1

• After this point, the domain of values for the variables U,W,R,O is {0,2,3....9} and
the domain of values for the variable T is {2,3....9}. Thus, using the MRV heuristic,
we’ll now be assigning a value to T .
Consider the constraints at this state of time : C2+2T = O+10 =⇒ O = C2+2T−10.
Assigning the values 2,3,4 to T results in O having no possible values. Assigning the
value 5 leaves out just a single value for O = 0. Setting the value T = {6,7,8} results
in O having two possible values. Thus, using the least constraining value heuristic, we
set T = 6.

F=1

T=6

2

• At this point, one of the constraints becomes C2 + 12 = O + 10 =⇒ O = C2 + 2.
O’s domain is now {2,3} which is smaller than any of the other variables and thus the
MRV heuristic directs us to choose to assign a value for O.
The least constraining value heuristic doesn’t help us too much over here and so we
proceed in assigning values in order. We now set O = 2.

F=1

T=6

O=2

• Setting O = 2 =⇒ C2 = 0. The constraints are now C1 + 2W = U,R + 10C1 = 4.
Now, observe the variable R. We have R = 4 − 10C1. The possible values for R are
{4} and thus the MRV heuristic directs us to use assign this variable. We set R = 4.

F=1

T=6

O=2

R=4

• The constraint now is 2W = U . The domain of U is the set of remaining even values
= {0,8} and has a smaller domain than W . Thus, we now choose to assign a value to
U . The least constraining value heuristic value doesn’t help narrow down between the
two values (they’re both bad).

F=1

T=6

O=2

R=4

U=0

• Setting U = 0 =⇒ W = 0 which is a contradiction and so we backtrack.

3

F=1

T=6

O=2

R=4

U=0

X

• Similarly, setting U = 2 doesn’t work as well since 4 has already been assigned to R
and so we backtrack.

F=1

T=6

O=2

R=4

U=2

X

U=0

X

• We now backtrack all the way up to O and set the value of O to be 3.

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

• Setting O = 3 =⇒ C2 = 1. The constraints are now C1 +2W = U+10, R+10C1 = 6.
Similar to before, R can only take one value - 6. However, this value has already been
assigned and so we now backtrack to T .

4

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

• We now set T = 7 - the next possible value for T .

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

T=7

• Now that T = 7, the constraints are now C2 + 14 = O + 10 =⇒ O = C2 + 4. O can
now only take two values - {4,5}. Thus, MRV directs us to choose a value for O. The
LCV heuristic doesn’t help much here and so we set O = 4.

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

T=7

O=4

• Setting O = 4 =⇒ C2 = 0. The constraints are now C1 + 2W = U, 8 = R + 10C1.
Observe how the only possible value for R is 8 and thus MRV dictates that we assign
that value to R.

5

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

T=7

O=4

R=8

• Setting R = 8 =⇒ C1 = 0. The constraints are now 2W = U . The possible values for
U are {0,2,6} which is a domain smaller than that of W (all remaining values). Thus,
we now pick a value for U . The LCV heuristic dictates that we select the value U = 6.

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

T=7

O=4

R=8

U=6

• We are now left with only possible value for W . We’ll get W = 3. Notice that
this satisfies all constraints and since we’ve assigned values for all variables, this is a
satisfying assignment.

F=1

T=6

O=2

R=4

U=2

X

U=0

X

O=3

R=6

X

T=7

O=4

R=8

U=6

W=3

Thus, the solution to this problem is F = 1, T = 7, O = 4, R = 8,W = 3, U = 6.

6

2 Scheduling Nightmare

As an overworked student, you must complete all of your homework assignments in each of
your classes before they are due at the end of the semester (at time t = T). Each homework
assignment has a specific duration d ∈ N representing how long it will take to complete.
You must also complete them in order (so the first homework assignment in a class must
be completed before the second in that same class); however, homework assignments in one
class can be completed in any order relative to assignments in another class.

Since you are a student in computer science, many of your homework assignments require
the use of specific machines for experimentation. You have a set of k computers; some
homework assignments require one or more specific computers, and occupy them entirely for
the entire duration of the homework assignment (i.e., if both homework A and homework B
require computer 1, then you cannot work on A and B at the same time).

An Example Semester

Fig. 2 gives an example semester-long homework schedule for a student. The student has
four classes, and each class has either three or four homework assignments. These homework
assignments have (i) a duration in time periods, (ii) a relative ordering to other homework
assignments in the same class, and (iii) an optional resource requirement. We assume the
semester is 15 time periods long.

For example, the homework H0,1 has duration 4 and requires resource 0. Similarly,
homework H1,0 has duration 1 and also requires resource 0. As discussed above, the shared
resource constraint would prevent the student from overlapping these two homeworks in her
schedule.

Please use the example from Fig. 2 in these problems.

1. What are the variables and their domains?

2. Describe how you would write this problem as a CSP with arity r > 2, e.g., with at
least some constraints having at most r variables.

3. Qualitatively, how would this change if you were limited to arity r = 2? Recall from
class that any CSP can be written this way.

4. Solve your scheduling CSP—either the r > 2 or r = 2 version—by hand or with code
using (i) a deterministic ordering of variables and values (e.g., alphabetical order) and
(ii) the most constrained variable and least constraining value heuristics discussed in
class. How much of an effect did these heuristics have on the size of the search tree?
Quantify your answer.

5. The problem above is solved relatively easily with simple heuristics and backtracking
search. This is not always the case. Come up with a short “worst-case” instantiation
of the general scheduling problem. What are some properties of these search problems

7

that will thwart the most constrained variable heuristic? The least constraining value
heuristic?

H0,0
 : 3 H0,1

 : 4 H0,2
 : 2 H0,3

 : 2

H1,0
 : 1 H1,1

 : 5 H1,2 : 5

H2,0
 : 2 H2,1

 : 2 H2,2
 : 2 H2,3

 : 2

H3,0
 : 2 H3,1

 : 3 H3,2
 : 3 H3,3

 : 2

1

2

0

Class 0:

Class 1:

Class 2:

Class 3:

15 Time Periods: T={0,…,14}

Figure 2: A semester’s worth of homeworks for four classes. Each homework has a relative
ordering (e.g., H0,0 must be completed before H0,1), an integral duration, and (possibly) a
resource constraint. The semester is assumed to be 15 time periods in length.

The following solution was provided by Revanth Bhattaram (with slight modifications):

(a) We will denote the variables as Si,j, which represents the start time of Hi,j (the jth
homework of the ith course). Si,j can take values from 0 to T .

(b) There are essentially three types of constraints for this problem :

(i) Completion Constraints : These constraints basically dictate that the Si,j

values must be such that the task will be able to finish before the semester ends.
This can be written in mathematical form as :

∀(i, j), Si,j +Hi,j.duration ≤ T

8

(ii) Precedence Constraints : These are the constraints that enforce the require-
ment that each homework in a course can be started only after the previous home-
work (in the same course) has been completed. This can be represented as :

∀i, InOrder(Si,0, Si,1....Si,j−1, Si,j)

Where the function InOrder checks if each homework starts after the previous one
has been completed.

(iii) Resource Sharing Constraints : Some homeworks require the use of one
or more resources. When two homeworks use the same resource, they cannot be
worked on at the same time (or overlapping periods). These constraints handle
such cases. I’ll define a function NotOverlapping(Ri) that checks if the all the
homeworks that use resource Ri have non-overlapping time periods.

∀i, NotOverlapping(Ri)

For the example for this problem, T = 14 and the possible pair of values for (i, j) are
{(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}

(c) If we were limited to arity r = 2, then the constraints have to be restructured in order
to satisfy this restriction. To do so, each r > 2 arity constraint (such as InOrder()
and NotOverlapping()) can be replaced by a set of binary constraints. The number of
constraints will have to increase for this but the same restrictions would hold. For arity
r = 2, the constraints are as follows :

(i) Completion Constraints : ∀(i, j), Si,j +Hi,j.duration ≤ T

(ii) Precedence Constraints : ∀(i, j), Si,j +Hi,j.duration ≤ Si,(j+1)

(iii) Resource Sharing Constraints : ∀(i1, j1) and (i2, j2) that share a constraint,

Si1,j1 +Hi1,j1 .duration ≤ Si2,j2

or

Si2,j2 +Hi2,j2 .duration ≤ Si1,j1

If you wish to express this as a single inequality, write is as :

(Si1,j1 +Hi1,j1 .duration− Si2,j2)(Si2,j2 +Hi2,j2 .duration− Si1,j1) ≤ 0

(d) For both parts we will use forward checking to eliminate values after each stage of the
search algorithm. For the first part, we will use an alphabetical ordering of variables
and increasing order of values for the deterministic ordering.

(i) The search algorithm for this part works as follows :

• We first set a value of 0 for S0,0.

S0,0 = 0

9

• From here on, we proceed to set values for S0,1, S0,2, S0,3, S1,0, S1,1

S0,0=0

S0,1=3

S0,2=7

S0,3=9

S1,0=9

S1,1=10

• At this point, we notice that S1,2 has no possible values that can be set and
so we backtrack. S1,1 has no other possible values and so we work up to S1,0.
Setting S1,0 = 10 rules out all values for S1,1. Same goes for the remaining
values of S1,0.

S0,0=0

S0,1=3

S0,2=7

S0,3=9

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

• You now backtrack to S0,3 and try the remaining values. Again, this doesn’t
make a difference and results in the same assignments and disappointments.

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

• We now set S0,2 = 8 and consequently set the values for S0,3, S1,0, S1,1

10

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2=8

S0,3=10

S1,0=7

S1,1=8

• Now, when we try to set a value for S1,2, we see that we have no possible values
and so we backtrack. We notice that going back to S0,2 and try all possible
values doesn’t help much and always results in disappointment. The search
tree (in a compressed form is as follows) :

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

• We now go all the way back to S0,1 and set it to be 4. Consequently, values
for S0,2, S0,3, S1,0, S1,1, S1,2. As it cab be seen, we finally have a valid value for
S1,2.

11

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

S0,1=4

S0,2=8

S0,3=10

S1,0=3

S1,1=4

S1,2=9

• Continue to set the values of S2,0, S2,1, S2,2, S2,3. The only thing to be cleared
up here is that we’re setting S2,2 = 9 because of the fact that H1,1 that uses
the same resource finishes at 9.

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

S0,1=4

S0,2=8

S0,3=10

S1,0=3

S1,1=4

S1,2=9

S2,0=0

S2,1=2

S2,2=9

S2,3=11

• Next, we go to assign values for course 3. S3,0 is set to be 0. Observe that S3,1

can only start at 4 (since H2,1 uses the same resource). That, along with the
fact that H2,2 starts at 9 restricts us to set S3,2 = 11. However, that leaves out
any possible values for S3,3 and thus we have to backtrack.

12

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

S0,1=4

S0,2=8

S0,3=10

S1,0=3

S1,1=4

S1,2=9

S2,0=0

S2,1=2

S2,2=9

S2,3=11

S3,0=0

S3,1=4

S3,2=11

X

• We keep on backtracking to S3,2, S3,1, S3,0, S2,3 but find that we still don’t get
solution. We now move on to S2,2 = 10.

13

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

S0,1=4

S0,2=8

S0,3=10

S1,0=3

S1,1=4

S1,2=9

S2,0=0

S2,1=2

S2,2=9

S2,3={2,3}

S3,0 ...

S3,1 ...

S3,2 ...

X

S2,2=10

• Things now become smooth and we just assign values one by one until we run
out of variables to assign to.

14

S0,0=0

S0,1=3

S0,2=7

S0,3={9,10,11,12}

S1,0={10,11,12,13}

X

S1,0=9

S1,1=10

X

S0,2={8,9,10,11,12}

S0,3 ...

S1,0 ...

S1,1 ...

X

S0,1=4

S0,2=8

S0,3=10

S1,0=3

S1,1=4

S1,2=9

S2,0=0

S2,1=2

S2,2=9

S2,3={2,3}

S3,0 ...

S3,1 ...

S3,2 ...

X

S2,2=10

S2,3=12

S3,0=0

S3,1=4

S3,2=7

S3,3=10

Yay !

Thus, the solution obtained here is

• S0,0 = 0, S0,1 = 4, S0,2 = 8, S0,3 = 10

• S1,0 = 3, S1,1 = 4, S1,2 = 9

• S2,0 = 0, S2,1 = 2, S2,2 = 10, S2,3 = 12

• S3,0 = 0, S3,1 = 4, S3,2 = 7, S3,3 = 10

15

(ii) For this part, we will use the MRV(Minimum Remaining Variables) heuristic to
choose a variable and the LCV(Least Constraining Value) heuristic to choose value
for the selected variable. The search proceeds as follows :

• Initially, the only constraints that we can take a look at are the completion
constraints. These constraints restrict the domains of each of the variables.
We observe that the variables with the minimum remaining values are S1,1 and
S1,2. We randomly break the tie and select S1,1. Now, we have to apply the
LCV heuristic while assigning a value. Setting S1,1 = 0 makes it impossible for
S1,0 to take any possible values (because the precedence constraint would be
violated) and so we don’t assign this value. For any of the remaining values,
we observe that the number of values restricted for S1,0 and S1,2 combined are
similar and so we set S1,1 = 1. The domains of S1,0, S1,2, S2,0, S2,2 are reduceed
due to this assignment.

S1,1=1

• At this stage, S1,0 has only one possible value and so the MRV heuristic directs
us to choose this variable. Since there’s only one possible value, there’s no
confusion there.

S1,1=1

S1,0=0

• Now, the variable with the smallest domain is S1,2. LCV doesn’t help much
here and so we use the first value in the domain and set S1,2 = 6.

S1,1=1

S1,0=0

S1,2=6

• There’s now a tie between S2,0 and S2,2 when using the MRV heuristic. We
just pick S2,0 and set it to be 6 (using LCV). The domains of the remaining
homeworks of course 2 are reduced.

S1,1=1

S1,0=0

S1,2=6

S2,0=6

• The domains of S2,1, S2,2, S2,3 are the same (and smaller than the other vari-
ables) and so we use MRV and a tie-breaking to assign a value of 8 to S2,1.
The domains of S2,2, S2,3, S3,1, S3,2 are reduced.

16

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

• MRV directs us to choose S2,2 or S2,3. Lets take up S2,2 and set it to be 10.
Why are we using 10 ? Because any other value would leave out 0 possible
values for S2,3. The domains of S2,3, S3,1, S3,2 are now reduced.

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

• We have no choice here. S2,3 has only one value we set that value. Thus, we
now put S2,3 = 12.

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

• The domains of S3,1 and S3,2 are now the smallest. So, we now choose S3,1 as
the next variable. We use LCV to set S3,1 = 2. Why ? Because setting a value
less than 2, would rule out any possible value for S3,0.

17

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

• Next, we see that S3,0, S3,2 have their domains restricted to a size of 1. So, we
pick either and set it to be this remaining value. We set S3,0 = 0 and then set
S3,2 = 5

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

S3,0 = 0

S3,2 = 5

• The next variable to be set now is S3,3. We set it to be 8.

18

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

S3,0 = 0

S3,2 = 5

S3,3 = 8

• Of the remaining variables, S0,1 has the minimum remaining values (because of
the length of the homework and the resource constraint of H1, 0). LCV tells us
to set S0,1 = 4 because values less than 4 would leave no possible assignments
for S0,0.

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

S3,0 = 0

S3,2 = 5

S3,3 = 8

S0,1 = 4

• Now that we’ve given a value to S0,1, the domain of S0,0 gets restricted and so

19

MRV gets us to choose that variable for assignment. We set S0,0 = 1.

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

S3,0 = 0

S3,2 = 5

S3,3 = 8

S0,1 = 4

S0,0 = 1

• The last two variables left are S0,2 and S0,3. They have the same domain and so
we set these variables in order. We set S0,2 = 8 and S0,2 = 10. This concludes
the run of the search algorithm. No backtracking !

20

S1,1=1

S1,0=0

S1,2=6

S2,0=6

S2,1 = 8

S2,2 = 10

S2,3 = 12

S3,1 = 2

S3,0 = 0

S3,2 = 5

S3,3 = 8

S0,1 = 4

S0,0 = 1

S0,2 = 8

S0,3 = 10

Yay !

Thus, the solution obtained here is

• S0,0 = 1, S0,1 = 4, S0,2 = 8, S0,3 = 10

• S1,0 = 0, S1,1 = 1, S1,2 = 6

• S2,0 = 6, S2,1 = 8, S2,2 = 10, S2,3 = 12

• S3,0 = 0, S3,1 = 2, S3,2 = 5, S3,3 = 8

Observe how we didn’t have to backtrack a single time unlike before where we had
to backtrack loads of times. The sizes of the search trees speak volumes. This show
how heuristics help improve performance while searching.

(e) Where MRV Fails : Consider the following example :

H0,0(2)−−−−H0,1(2)−−−−H0,2(10)

Here, we have one course with three homeworks. The semester ends at T=14.

21

Now, if we were to use MRV, we would first select an assignment for S0,2. Now, if you
were to set values in order and set S0,2 = 0, 1, 2..., then you would have to backtrack
several times since setting S0,2 to a value less than 4, will leave out no values for the
other two variables.

However, if you were to go in a deterministic order, then the assignments would be
S0,0 = 0, S0,1 = 2, S0,2 = 4. This would be done in just three steps with no backtracking
whatsoever. Thus, in this case, using a heuristic actually has a negative effect.

In general, MRV could fail in cases where an ordering has to be followed. In such cases,
MRV could select a variable without considering the ordering that has to be maintained
and thus assign values that will eventually violate this constraint.

Where LCV Fails : Consider the following example :

H0,0(2)−−−−H0,1(2)−−−−H0,2(9, R)
H1,0(13)−−−−H1,1(1, R)
H2,0(3, R)

H2,0, H1,1 and H0,2 share a resource R and T = 14.

Let’s take a deterministic ordering for variable assignment. So, we’ll be assigning vari-
ables in the following order S0,0, S0,1, S0,2, S1,0, S1,1, S2,0.

We first set the values S0,0 = 0 and S0,1 = 2 without having to think too much. Now,
when assigning a value for S0,2, we have two options - {4,5}.

(i) Assigning 4 would restrict the domain of S1,1 to {0,1,2,3,13} and S2,0 to {0,1}.
(ii) Assigning 5 would restrict the domain of S1,1 to {0,1,2,3,5} and S2,0 to {0,1,2}.

Thus, LCV directs us to set S0,2 = 5. However, once this has been set, we move on and
set S1,0 = 0 thereby leaving no possible values for S1,1. Thus, we have to backtrack and
set S0,2 = 4.

Observe that if we followed a deterministic ordering of variables and values, we’d have the
following assignments in order : S0,0 = 0, S0,1 = 2, S0,2 = 4, S1,0 = 0, S1,1 = 13, S2,0 = 0
and that’s a valid assignment ! No backtracking at all !

In general, LCV aims to limit the number of values ruled out after each step and chooses
a value that opens up several possibilities in the next level. This would not be that
helpful when you had a fixed assignment/solution (which you would discard in favor of
greater options using LCV).

3 Planning

1. GraphPlan can backtrack during its second phase while searching backwards from the
goals through the planning graph. Explain, in words and with a simple example, why
GraphPlan needs to backtrack in its backwards search.

22

2. If GraphPlan cannot find a solution during the backwards search, does this mean that
the problem is not solvable? If so, explain why. If not, explain what GraphPlan can
do to find a solution in such cases.

3. It is possible for GraphPlan to terminate after finding an n time step plan of k operators,
while there actually exists an n time step plan with less than k operators in the planning
graph. Show a concrete example of this and explain why, in general, this can occur.

4. FF performs forward heuristic search using as an heuristic the number of levels to the
goal of the relaxed GraphPlan graph (no deletes). Is this heuristic admissible? Explain
why, and if not give a counterexample, i.e., show an example for which FF does not
find the optimal solution.

5. Extra credit: We have seen in class that linear planning using a stack of goals and
means-ends-analysis was incomplete (remember the one-way-rocket domain). Can you
find an example for which nonlinear planning (i.e., using a set of goals, instead of a
stack of goals) with means-ends-analysis is incomplete?

1. The reason why GraphPlan needs to backtrack during the backwards search phase is
that, if one precondition (or goal) can be attained with multiple actions (or no-op), it
might select a “dead end”. We have seen sn example of this situation in the one-way
rocket domain presented in class. In layer 5 we need to achieve in(o1, R), in(o2, R)
and at(R, B). We have two ways to do so, the first and correct one is select as action
move(A B) and two no ops. This correspond to first loading the two objects and then
moving the rocket. A “dead end” would be selecting the two load actions and a no-op
for at(R, B) as we would end up trying to load the two object but the rocket would no
longer be there.

2. If GraphPlan cannot find a solution during the backwards search it does not necessarily
mean that the problem is not solvable; it only means there is not a plan of length n,
where n is the last layer reached in the extend step. In this situation GraphPlan can
extend the planning graph with one more proposition level.If in the new proposition
layer nothing has been added and we cannot find a plan when backtracking then we
can conclude that there is no plan.

3. In the following example, we can get to the goal (specified by Goal1, Goal2, Goal3,
Goal4) in two ways, either in a one step plan by applying actions 1 through 4 (that is
1 step 4 operators), or in 2 step by first applying action 5 and then action 6 (that is 2
step and 2 operators). In the image we omitted no-ops only to make it more readable
(otherwise they should be there).

23

4. Yes, the heuristic is admissible. If during the forward step of GraphPlan we find
the goal at depth n the plan contains at least n actions and therefore we are not
overestimating the true cost. Notice how, in most of the cases, even if we find the goal
at depth n the plan requires a larger number of actions. There are two reasons for this:
(1) at each step we can take more then one action, (2) when we find the goal at step
n we are not guaranteed to be able to backtrack and we might need to expand more.

5. Extra Credit: Consider the following operators and their effects:

Precondition Add Delete
Op1 D B
Op2 C A,B
Op3 A D

Let’s assume the initial state is {A,B} and the goal is {B,C}. If we use means-ends
analysis we need to select a goal to achieve. Since B is already in the initial state, the
only possible choice is C. To achieve C we select Op3, we delete A,B and add D. The
current state is therefore {C}. Since we are not in the goal state means-ends analysis
select the next goal to achieve, B. To achieve B we can use Op1 but we first need to
achieve D. Therefore, means-ends analysis adds D as subgoal. In the current state
there is no way to achieve D and means-ends analysis fail to find a solution.

4 Q-Learning

A robot moves deterministically in a world of 12 states laid out as shown in the Fig. 3. The
robot can take four actions at each state, namely N, S, E and W. An action against a wall
leaves the robot in the same state (note: not all walls are shown). Otherwise, the outcome
of an action is deterministic (e.g. if a robot takes action N and it does not hit a wall, it will
always end up in the state above it). The robot converged to the Q-table shown in Fig. 4,
where we show only the maximum values for each state, as the other values (represented
with a dash) do not matter in terms of the final policy.

1. The robot uses this learned Q-table to move in the world. Write the sequence of actions
that the robot takes and states reached in three different episodes (of six actions each)
starting in three different start states, namely S1, S6 and S7.

24

S9 S10 S12S11

S5 S6 S8S7

S1 S2 S4S3

Figure 3: The robot world

Figure 4: Q-table

Note: If there is more than one best action available, choose one randomly.

You are told that the discount factor for Q-learning is γ = 0.9. Based on this knowledge and
the learned Q-table, answer the following questions:

2. A friend of yours, Chris, tells you that there is a single state s, such that r(s, a) > 0,
for all actions a. What is that state and what is the reward?

3. Chris also tells you that the robot world has interior walls, besides the outside walls
shown in the picture above. Where are those walls?

25

Note: As posted in Piazza, Q(S1, N) = Q(S1, E) = 59, not 60 as the Q-table says.

1.

State Action State Action State Action State Action State Action State Action State
S1 E S2 E S3 E S4 N S8 N S12 N S12
S6 W S5 N S9 E S10 E S11 E S12 N S12
S7 S S3 E S4 N S8 N S12 E S12 N S12

2. Notice that the Q-value of state S12 for the optimal actions does not depend on any
other state, because the optimal actions are to go N or E both of which remain in state
S12. Thus we will first find the optimal reward for S12:

Q(S12, N) = r(S12, N) + γQ(S12, N) =⇒ r(S12, N) = 0.1Q(S12, N) = 10

Similarly
r(S12, E) = 10

Now we can compute the optimal reward for the states going into S12, such as S11:

Q(S11, E) = r(S11, E)+γQ(S12, E) =⇒ r(S11, E) = 0.1Q(S12, E)−Q(S11, E) = 0

We can continue this procedure to find that the reward for the optimal action in every
state except for S12 is 0. Thus S12 can be the only state with positive reward for every
action, and the reward for the optimal actions for S12 is 10.

3. Based on the calculations above, we find that if there were no walls, and no state could
give negative reward, then the optimal action(s) in each state would be to move closer
to S12. Therefore, in any state where an action that should move us closer to S12
is not optimal, we know there must be a wall in the direction of that action. This
means there is a wall between S2 and S6, between S6 and S10, between S7 and S11,
and between S7 and S8.

5 8-Queens

1. For the chess board in Fig. 5, the red queens are attacking each other. Show two levels
of the CSP local search using the min-conflict heuristic, justifying your choice of the
queens to move.

2. Discuss the relationship between the MRV and min-conflict heuristics.

(a) The min-conflicts heuristic involves two step: (1) randomly select a variable con-
flicting one or more constraints, (2) find a new assignment for the variable selected
that minimize the number of conflicts.

In this problem the variables are the 4 queens drawn in red and their value is the
position on the board. First we randomly select the queen in H6. We now have
to minimize its number of conflicts. It turns out that, for ever possible move, this
queen has at least one conflict, we can therefore choose any cell with exactly one
conflict. We decide to move this queen to A6.

26

Figure 5: An 8-queen problem.

We can now move to the second level of the CSP but, before applying the min-
conflict heuristic, we need to update the set of queens that violates the constraint
(the one in E3 in now fine while the one in A1 has a conflict). As before we
randomly select one of the five queens, the one in A1. We now look for the
position that minimize its conflicts and we move it to H8 where it has only one
conflict.

After two step of the CSP we have reduced the number of conflicts to 2 (the queen
in D5 and the one in H8)

(b) There are several differences between MRV and min-conflicts but the two main
points we are looking for are:

(i) MRV starts with an empty assignment and tries to build a consistent one.
On the other hand min-conflicts starts with an inconsistent assignment and
tries to fix problem as it goes.

(ii) When using MRV, if coupled with backtracking, we can always find a so-
lution or conclude that the CSP has no solution. Min-conflict, due to it’s
random nature, cannot give us the same guarantees as MRV. On the other
hand on specific class of problems (e.g. 8-queens) min-conflict has proven to
be much faster then MRV.

27

	Cryptoarithmethic
	Scheduling Nightmare
	Planning
	Q-Learning
	8-Queens

