
1

Competitive Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006

2

�Self-Organizing Systems�

Problem: find the (or some) underlying structure in a
complex environment.

Approach: group input points into clusters.

Examples:

� Concept learning: group animals into �cats�, �dogs�,
�people�

� Visual structure: group pixels into edges of various
orientations

3

How Do We Find the Clusters?

The k-Means Algorithm

1. Create k clusters, with each mean µi initialized to a

randomly chosen point from the training set.

2. Label each point by the cluster that �captures� it

(closest µi value.)

3. Recompute each µi as the mean of all points

captured.

4. Repeat until labels stop changing.

4

k-Means with k=4

Random initial
values

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



5

k-Means Computes Four Clusters

6

Nearest Neighbor Voronoi Diagram

7

Problems with k-Means

1. Not an on-line learning algorithm (although on-line
variants exist: competitive learning.)

2. Must remember the label of each point in order to
adjust the means.

Note: once you have computed the k cluster centers,
you can discard the training data and classify new

points using just the µi. Much more efficient than

nearest neighbor. (But you don't get to choose the
class labels!)

8

Competitive Learning

An unsupervised training method, like k-means.
No teacher. No error signal.

Unsupervised learning systems are often referred to as
�self-organizing systems�.

More biologically plausible than backprop, but
computationally weaker.

See HK&P sections 9.1, 9.2, 9.4, and 9.7.

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



9

Competitive Learning Algorithm

1. Initialize units so they have different weights.

2. Pick an input point Sk, and find the closest matching

unit (the �winner�) for that point.

3. Adjust the winner's weight vector in the direction of
the input Sk.

4. Repeat, for all input points, for many epochs.

Sk

10

�Closest Match� = Largest Dot Product

Σ
x1

x2

x3

w2

w3

w1

y

y = �
i

xi�wi

x�w = x1w1�x2w2�x3w3

w1

Neurons
could do this!

11

Picking A Winner by
�Lateral Inhibition�

Each unit inhibits the others in proportion to its
current activation level.

�Winner take all� dynamics.

Self-excitatory connections
enhance stability (Grossberg).

Can skip WTA dynamics and just use �max� to find the
winner directly.

Input

12

Competitive Learning Demo

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



13

Initializing the Weights

1. Initialize to random values.

2. Initialize to randomly-selected training points.

3. Initialize to constant vector v, and �turn on� the
input patterns gradually during learning:

As input patterns separate, so will the weight vectors.

���i � �1���v

where� goes from 0	1

14

Potential Problem: Starvation

Problem: one unit could win all the time.

Solution: limit the sum of a unit's input weights.

Input

+100
+100

+2

+6

For all units j, �
i


wij
 = B

Assume w.o.l.o.g. that B = 1.

15

Starvation Averted

Now the weight vectors correspond to points on a
hypersphere of radius B.

If the pattern vectors have zero mean (i.e., they're
centered on the origin), no one unit can win for all
possible patterns.

16

Learning Algorithm: Simple Version

1. Move winning unit's weight vector in the direction
of the input pattern Sk.

2. Renormalize the weights:

Is weight normalization biologically plausible? Maybe.

But it's easier to normalize the inputs instead.
Grossberg does this by an extra input layer.

Rumelhart & Zipser also do this.

wij � wij � cik�g
cik = bit i of pattern Sk

g = learning rate constant

wij �
wij

�
i

wij

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



17

Learning Algorithm:
Rumelhart & Zipser Version

�wij = {
0 if unit j loses for Sk

g
cik
nk

� gwij if unit j wins for Sk

cik = bit i of pattern Sk

nk = �
i

cik = number of 1 bits

g = learning rate constant, e.g., 0.01

18

Maintaining Normalized Weights

When j wins: �wij = g
cik
nk

� gwij

Since weights are normalized:

�
i

wij = 1 for any unit j

�
i

cik
nk

= 1 for any input pattern

So �
i

�wij = 0 for any unit j

So �
i

�wij��wij � = 1 weights stay normalized!

19

Leaky Learnning

Due to an unfortunate choice of initial weights, some
units may never be winners.

Solution: �leaky learning.�

�wij = {
gw

cik
nk

� gwwij if j wins

gl

cik
nk

� glwij if j loses

where glgw

20

Competition with a �Conscience�

Alternative to leaky learning: each unit adjusts its
sensitivity (via a bias term bj) so that it wins a

reasonable amount of the time.

yj = �
i

wij�cik � bj

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



21

What is a �Good� Partitioning�

Mi

�
= {

1 if unit i wins pattern �

0 otherwise

Lyapunov cost function: E �w � =
1

2
�
i , j ,�

Mi

� �� j�wij �
2

Sum of squared distances between patterns and
their winning unit's weight vector.

Learning rule: �wij = ��
�E

�wij

= ��Mi
�� j

Optimal partition: minimal E �w �.
There are many local minima.

22

Local Minima

LMS learning has a quadratic
error surface with no local minima.

Competitive learning does have local
minima because the �winner� is a
discontinuous function.

E

wi�wi

E

wi�wi

Mi

�
= {

1 if unit i wins pattern �

0 otherwise

E �w � =
1

2
�
i , j ,�

Mi

� ��j�wij �
2

23

Example of a Local Minimum

Suboptimal
Partitioning

Optimal
Partitioning

Local minimum

Global minimum

24

Convergence

Stochastic competitive learning (process training
points one at a time) might not converge.

Grossberg: weight vectors can go through cycles if the
training patterns are presented cyclically.

The batch version always converges.

(But batch learning is not neurophysiologically
plausible.)

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



25

Stability

Will the weight vectors shift around forever?

Not if the model reaches an �equilibrium state� where

the weights stop changing, i.e. the average ∆wij is zero.

Under what conditions is the model stable?

26

Stability Measure

T = �
k

pk�
i , j

v jk �� jk��ik �

pk= probability of pattern k

vjk= probability unit j wins for pattern k

� jk= activation level of unit j on pattern k

T = for each pattern, how much does the activation
level of the winner exceed that of the losers?

High T (stable): winner �wins big�.
Widely separated regions.

Low T (unstable)

27

Characterizing the Stable State

Let's assume binary patterns...

pk= probability of seeing pattern Sk

v jk= probability that unit j wins for pattern Sk

What's the chance until j will win on the next trial?

�
k

pk v jk

What's the chance the next input pattern will have bit i on?

1

k
�
k

pkcik

28

Weights Don't Change On Average

�
k

pk vjk�wij = 0 for all i,j

By substitution:

0 = g�
k

cik
nk

pk v jk � g�
k

wij pk v jk

wij�
k

pk v jk = �
k

cik pk v jk

nk

prob. that
unit j wins

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



29

Nature of the Stable State

wij =

�
k

pkcik v jk

nk

�
k

pk v jk

Assume nk is a constant N for all patterns Sk . Then:

wij =
1

N
�P [bit i = 1
unit j wins ]

Unit j allocates the most weight to input lines
that are most often on when j wins.

prob. that bit i is on
and unit j wins

prob. that unit j wins

30

Local Fluctuations

The preceding analysis is based on averages over all
training patterns.

But if patterns are presented randomly, there will be
local fluctuations in pk (variance from the mean value.)

Stability = insensitivity to small fluctuations.

How can we measure this?

31

High Stability From Pattern Overlap

Let � jl= response of unit j to pattern Sl : � jl = �
i

wij cil

Let rlk= overlap between Sl and Sk : rlk = �
i

cik cil
nk

Then at equilibrium: � jl =

�
k

pk v jk rlk

�
k

pk v jk

Conclusion: max stability (high � ) when unit captures

patterns that are highly overlapped.

32

What is Competitive Learning
Good For?

Codebooks for compressing speech and image data.

Create a codebook of 512 subimages. Can transmit a
subimage in 9 bits instead of 216. Big savings!

Some loss of image quality.

1000 x 1000
pixel image3x3 pixel

subimage
(27 bytes)

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



33

Dimensionality Reduction by
Competitive Learning on a Grid

Establish an M-dimensional neighborhood relation
among competitive units.

Ususally M=2 and the units are arrayed on a grid.

Map N-dimensional space of input points onto simpler
M-dimensional space, without loss of information.

�Captures the structure� of a complex world.

34

Dimensionality Reduction

Learns the
topology of the
robot's state space.

35

Dimensionality Reduction:
Mapping a Curve in the Plane

36

Kohonen's Self-Organizing
Feature Maps

1. Adjust weights of the winner,
as in standard competitive learning.

2. Adjust weights of neighboring
units as well, by lesser amount.

This is spatially localized
�leaky learning�.

3. Slowly shrink the neighborhood function as learning
progresses.

Nearby regions of feature space will be captured by
adjacent units. Learns the topological structure of
feature space.

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



37

Mapping the Plane

wi, j wi�1, j

wi , j�1

wi , j�1

wi�1, j

38

Mapping Planar Regions
with a 15x15 Grid of Units

This makes for neat demos.

But Kohonen nets are most useful when the input
space is of higher dimensionality than 2D.

39

Kohonen Demo

In the directory
matlab/kohonen

Set KohDataSet = 4
for triangle.

For instructions:
help kohdemo

40

Mapping 2D to 1D:
Space-Filling Curve

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



41

Kohonen's Ordering Theorem

Unit

Unit

Unit
42

Learning Theory (1D Case)
of Kohonen Nets

Only two stable solutions exist: weights all increasing,
or all decreasing.

No local minima.

Weight updates preserve monotonic regions of
weights, except at the boundaries.

So: kinks may be eliminated, but are never added.

43

Theory of Kohonen Nets (cont.)

Two phases of learning:

� �untangling�

� close fitting

Weight distribution is as:

Under-samples dense regions.

P ���2 /3

44

Encoding Speech (Kohonen 1988)

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



45

Competitive Networks as Classifiers

Suppose you want a fast nearest neighbor classifier.

You have labeled training data.

Solution: use a competitive network, with each unit
assigned a class label.

Convex classes?
Use several units per class.

A B

46

Kohonen's LVQ
(Learning Vector Quantization)

LVQ can be used to train a prototype set automatically
in order to produce a nearest neighbor classifier.

Compare the class of the training point with the class
of the winning unit i.

Move prototype vector toward the training point if
class is correct. Else move away.

Number of prototypes is fixed. Can we correct that?

�wi = {
�g����wi� if correct class

�g����wi� if wrong class

47

Variants of LVQ

LVQ2: if winning unit i is wrong class but next closest
unit j is correct class, then update both. Trains faster.

DSM (Decision Surface Mapping):
Adds new prototypes as needed.

If winning unit i is correct class, do nothing.

Otherwise, let j be the closest unit in correct class.

If j is �close enough�, update units i and j.

Else create a new prototype of the same class as j, and
place it at the location of the training point.

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006


