Competitive Learning

15-486/782: Artificial Neural Networks David S. Touretzky

Fall 2006

"Self-Organizing Systems"

Problem: find the (or some) underlying structure in a complex environment.

Approach: group input points into clusters.

Examples:

- Concept learning: group animals into "cats", "dogs", "people"

- Visual structure: group pixels into edges of various orientations

2

4

How Do We Find the Clusters?

The k-Means Algorithm

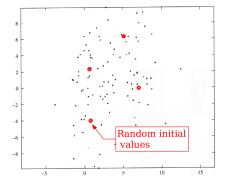
1. Create k clusters, with each mean μ_i initialized to a randomly chosen point from the training set.

- 2. Label each point by the cluster that "captures" it (closest μ_i value.)

3. Recompute each μ_i as the mean of all points captured.

4. Repeat until labels stop changing.

k-Means with k=4

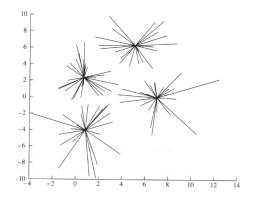


1

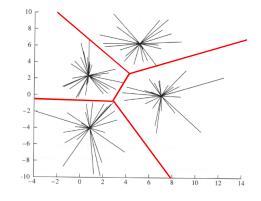
3

Fall 2006

k-Means Computes Four Clusters



Nearest Neighbor Voronoi Diagram



Problems with k-Means

1. Not an on-line learning algorithm (although on-line variants exist: competitive learning.)

2. Must remember the label of each point in order to adjust the means.

Note: once you have computed the k cluster centers, you can discard the training data and classify new points using just the μ_i . Much more efficient than nearest neighbor. (But you don't get to choose the class labels!)

Competitive Learning

6

8

An <u>unsupervised</u> training method, like k-means. No teacher. No error signal.

Unsupervised learning systems are often referred to as "self-organizing systems".

More biologically plausible than backprop, but computationally weaker.

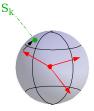
See HK&P sections 9.1, 9.2, 9.4, and 9.7.

David S. Touretzky

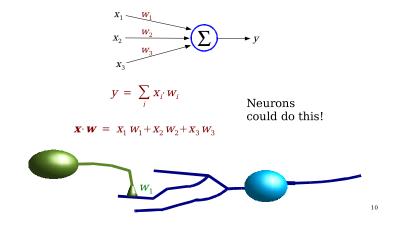
5

Competitive Learning Algorithm

- 1. Initialize units so they have different weights.
- 2. Pick an input point S_k, and find the closest matching unit (the "winner") for that point.
 - 3. Adjust the winner's weight vector in the direction of the input $\boldsymbol{S}_k.$
 - 4. Repeat, for all input points, for many epochs.



"Closest Match" = Largest Dot Product



Picking A Winner by "Lateral Inhibition"

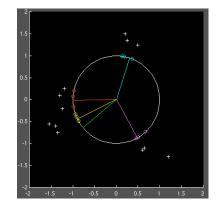
Each unit inhibits the others in proportion to its current activation level.

"Winner take all" dynamics.

Self-excitatory connections enhance stability (Grossberg).

Can skip WTA dynamics and just use "max" to find the winner directly.

Competitive Learning Demo



12

Initializing the Weights

1. Initialize to random values.

2. Initialize to randomly-selected training points.

3. Initialize to constant vector **v**, and "turn on" the input patterns gradually during learning:

> $\alpha \boldsymbol{\xi}_{i} + (1-\alpha) \boldsymbol{v}$ where α goes from $0 \rightarrow 1$

As input patterns separate, so will the weight vectors.

Potential Problem: Starvation

Problem: one unit could win all the time. Solution: limit the sum of a unit's input weights.

For all units
$$j$$
, $\sum_{i} |w_{ij}| = B$

Assume w.o.l.o.g. that B = 1.

Starvation Averted

Now the weight vectors correspond to points on a hypersphere of radius B.

If the pattern vectors have zero mean (i.e., they're centered on the origin), no one unit can win for all possible patterns.

Learning Algorithm: Simple Version

1. Move winning unit's weight vector in the direction of the input pattern S_k .

 $w_{ij} \leftarrow w_{ij} + c_{ik} \cdot g$ $c_{ik} = bit \ i \ of \ pattern \ S_k$ $g = learning \ rate \ constant$

14

16

2. Renormalize the weights: W_{i}

$$\tilde{w}_{ij} \leftarrow \frac{W_{ij}}{\sum W_{ij}}$$

Is weight normalization biologically plausible? Maybe.

But it's easier to normalize the inputs instead. Grossberg does this by an extra input layer.

Rumelhart & Zipser also do this.

David S. Touretzky

13

Learning Algorithm: Rumelhart & Zipser Version

$$\Delta w_{ij} = \begin{cases} 0 & \text{if unit } j \text{ loses for } S_k \\ g \frac{c_{ik}}{n_k} - g w_{ij} & \text{if unit } j \text{ wins for } S_k \end{cases}$$
$$c_{ik} = bit \text{ i of pattern } S_k$$
$$n_k = \sum_i c_{ik} = number \text{ of } 1 \text{ bits}$$

g = learning rate constant, e.g., 0.01

Maintaining Normalized Weights

When j wins: $\Delta w_{ij} = g \frac{C_{ik}}{n_k} - g w_{ij}$

Since weights are normalized: $\sum_{i} w_{ij} = 1 \quad \text{for any unit } j$

 $\sum_{i} \frac{c_{ik}}{n_k} = 1 \quad for any input pattern$

So $\sum_{i} \Delta w_{ij} = 0$ for any unit j

 $So \sum_{i} \left(w_{ij} + \Delta w_{ij}
ight) = 1$ weights stay normalized!

Leaky Learnning

Due to an unfortunate choice of initial weights, some units may never be winners.

17

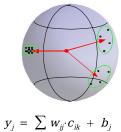
19

Solution: "leaky learning."

$$\Delta w_{ij} = \begin{cases} g_w \frac{c_{ik}}{n_k} - g_w w_{ij} & \text{if } j \text{ wins} \\ \\ g_l \frac{c_{ik}}{n_k} - g_l w_{ij} & \text{if } j \text{ loses} \end{cases}$$
where $g_l \ll g_w$

Competition with a "Conscience"

Alternative to leaky learning: each unit adjusts its sensitivity (via a bias term b_j) so that it wins a reasonable amount of the time.



What is a "Good" Partitioning"

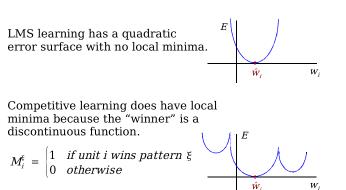
$$M_{i}^{\xi} = \begin{cases} 1 & if unit i wins pattern \xi \\ 0 & otherwise \end{cases}$$

Lyapunov cost function: $E(\mathbf{w}) = \frac{1}{2} \sum_{i,j,\xi} M_i^{\xi} [\xi_j - w_{ij}]^2$ Sum of squared distances between patterns and

their winning unit's weight vector.

Learning rule:
$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} = -\eta M_i^{\xi} \xi_j$$

Optimal partition: minimal E(w). There are many local minima.



Local Minima

$E(\boldsymbol{w}) = \frac{1}{2} \sum_{i,j,\xi} M_i^{\xi} \left(\xi_j - w_{ij} \right)^2$

Example of a Local Minimum Suboptimal Partitioning Optimal Partitioning Global minimum

Convergence

Stochastic competitive learning (process training points one at a time) might not converge.

Grossberg: weight vectors can go through cycles if the training patterns are presented cyclically.

The batch version always converges.

(But batch learning is not neurophysiologically plausible.)

15-486/782: Artificial Neural Networks

21

23

Stability

Will the weight vectors shift around forever?

Not if the model reaches an "equilibrium state" where the weights stop changing, i.e. the average Δw_{ij} is zero.

Under what conditions is the model stable?

Stability Measure

$$T = \sum_{k} p_{k} \sum_{i,j} v_{jk} (\alpha_{jk} - \alpha_{ik})$$

 p_k = probability of pattern k v_{jk} = probability unit j wins for pattern k α_{jk} = activation level of unit j on pattern k

T =for each pattern, how much does the activation level of the winner exceed that of the losers?

High T (stable): winner "wins big". Widely separated regions.

Low T (unstable)

26

Characterizing the Stable State

Let's assume binary patterns...

 p_k = probability of seeing pattern S_k v_{ik} = probability that unit j wins for pattern S_k

What's the chance until j will win on the next trial?

 $\sum_{k} p_{k} v_{jk}$

What's the chance the next input pattern will have bit i on?

$$\frac{1}{k}\sum_{k}p_{k}c_{ik}$$

Weights Don't Change On Average

$$\sum_{k} p_{k} v_{jk} \Delta w_{ij} = 0 \quad \text{for all } i,j$$

By substitution:

$$0 = g \sum_{k} \frac{C_{ik}}{n_k} p_k v_{jk} - g \sum_{k} W_{ij} p_k v_{jk}$$

$$W_{ij} \sum_{k} p_{k} V_{jk} = \sum_{k} \frac{c_{ik} p_{k} V_{jk}}{n_{k}}$$

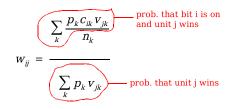
prob. that
unit j wins

25

27

Fall 2006

Nature of the Stable State



29

31

Assume n_k is a constant N for all patterns S_k . Then:

$$w_{ij} = \frac{1}{N} P[bit \ i = 1 | unit \ j \ wins]$$

Unit j allocates the most weight to input lines that are most often on when j wins.

Local Fluctuations

The preceding analysis is based on averages over all training patterns.

But if patterns are presented randomly, there will be local fluctuations in p_k (variance from the mean value.)

Stability = insensitivity to small fluctuations.

How can we measure this?

30

32

High Stability From Pattern Overlap

Let α_{jl} = response of unit j to pattern S_l : $\alpha_{jl} = \sum_i W_{ij} c_{il}$

Let
$$r_{lk}$$
 = overlap between S_l and S_k : $r_{lk} = \sum_{i} \frac{c_{ik} c_{il}}{n_k}$

Then at equilibrium: $\alpha_{jl} = \frac{\sum_{k} p_k v_{jk} r_{lk}}{\sum_{k} p_k v_{jk}}$

Conclusion: max stability (high α) when unit captures patterns that are highly overlapped.

What is Competitive Learning Good For?

Codebooks for compressing speech and image data.

Create a codebook of 512 subimages. Can transmit a subimage in 9 bits instead of 216. Big savings!

Some loss of image quality.

Dimensionality Reduction by Competitive Learning on a Grid

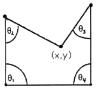
Establish an M-dimensional neighborhood relation among competitive units.

Ususally M=2 and the units are arrayed on a grid.

Map N-dimensional space of input points onto simpler M-dimensional space, without loss of information.

"Captures the structure" of a complex world.

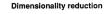
Dimensionality Reduction



Learns the topology of the

robot's state space.

A two-armed robot with two degrees of freedom



θ4)

θ2 0,

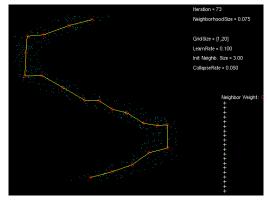
θ

Input units.

00000 2-D Layer of 00000 hidden units. 00000 when a unit wins 00000 its neighbours 00000 also learn

34

Dimensionality Reduction: Mapping a Curve in the Plane



Kohonen's Self-Organizing **Feature Maps**

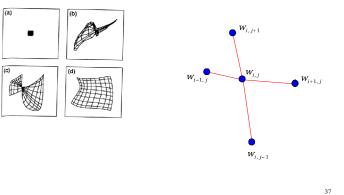
1. Adjust weights of the winner, as in standard competitive learning.	000000
2. Adjust weights of neighboring units as well, by lesser amount.	
This is spatially localized "leaky learning".	

3. Slowly shrink the neighborhood function as learning progresses.

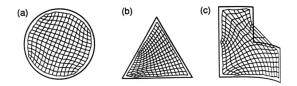
Nearby regions of feature space will be captured by adjacent units. Learns the topological structure of feature space.

33

Mapping the Plane



Mapping Planar Regions with a 15x15 Grid of Units



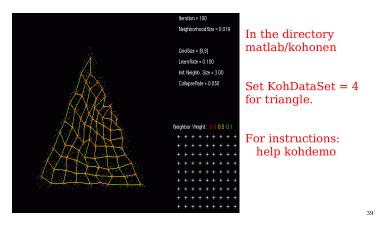
This makes for neat demos.

But Kohonen nets are most useful when the input space is of higher dimensionality than 2D.

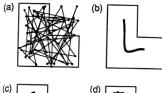
38

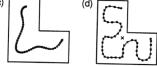
 40

Kohonen Demo



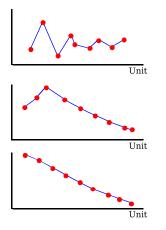
Mapping 2D to 1D: Space-Filling Curve





15-486/782: Artificial Neural Networks

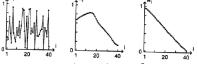
Kohonen's Ordering Theorem



Learning Theory (1D Case) of Kohonen Nets

Only two stable solutions exist: weights all increasing, or all decreasing.

No local minima.



42

44

Weight updates preserve monotonic regions of weights, except at the boundaries.

So: kinks may be eliminated, but are never added.

Theory of Kohonen Nets (cont.)

Two phases of learning:

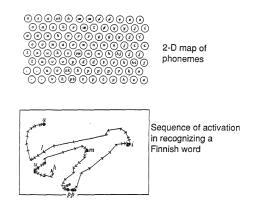
- "untangling"
- close fitting

Weight distribution is as:

 $P(\xi)^{2/3}$

Under-samples dense regions.

Encoding Speech (Kohonen 1988)



15-486/782: Artificial Neural Networks

41

Competitive Networks as Classifiers

Suppose you want a fast nearest neighbor classifier.

You have labeled training data.

Solution: use a competitive network, with each unit assigned a class label.

Convex classes? Use several units per class.

45

47

Kohonen's LVQ (Learning Vector Quantization)

LVQ can be used to train a prototype set automatically in order to produce a nearest neighbor classifier.

Compare the class of the training point with the class of the winning unit i.

 $\Delta w_i = \begin{cases} +g \cdot (\xi - w_i) & \text{if correct class} \\ -g \cdot (\xi - w_i) & \text{if wrong class} \end{cases}$

Move prototype vector toward the training point if class is correct. Else move away.

Number of prototypes is fixed. Can we correct that?

46

Variants of LVQ

LVQ2: if winning unit i is wrong class but next closest unit j is correct class, then update both. Trains faster.

DSM (Decision Surface Mapping): Adds new prototypes as needed.

If winning unit i is correct class, do nothing.

Otherwise, let j be the closest unit in correct class.

If j is "close enough", update units i and j.

Else create a new prototype of the same class as j, and place it at the location of the training point.