
Answers to Homework # 2
15-496/782: Introduction to Artificial Neural Networks

Dave Touretzky, Spring 2004

Problem 1. Consider a multilayer perceptron whose hidden units use x5 and whose output units
use cos(2x) as the transfer function, rather than the usual sigmoid or tanh. Using the chain rule,
starting from ∂E/∂yk, derive the formulas for the weight updates ∆wjk and ∆wij. Your final
formulas should be purely algebraic, i.e., they should not contain partial derivatives.

Answer: the original derivation of the backpropagation learning rule can be copied very closely;
only the nonlinear transfer function and its derivative change.

∂E

∂yk

= (yk − dk) (1)

∂E

∂netk
=

∂E

∂yk

·
∂yk

∂netk
= (yk − dk) · −2 sin(2netk) (2)

∆wjk = −η
∂E

∂wjk

= −η
∂E

∂netk
·
∂netk
∂wjk

= −η · (yk − dk) · −2 sin(2netk) · yj (3)

∂E

∂yj

=
∑

k

(

∂E

∂netk
·
∂netk
∂yj

)

=
∑

k

(

∂E

∂netk
wjk

)

(4)

∂E

∂netj
=

∂E

∂yj
·

∂yj

∂netj
=

∂E

∂yj
· 5net4j (5)

∆wij = −η ∂E
∂wij

= −η ∂E
∂netj

·
∂netj
∂wij

= −η · (
∑

k [(yk − dk) · −2 sin(2netk) · wjk]) · 5net4j · yi

(6)

Problem 2a Write code to train a backprop network to solve the four-bit parity problem. Use
targets of +0.8 and −0.8. Use a small learning rate, around 0.04, and no momentum.

Answer: The bpxor demo is easily modified to handle the four-input parity problem. The code
appears on the last page.

Problem 2b. Plot the set of 16 output values, Result2, as a line with 16 points numbered 0–15.
Update this plot every 10 epochs. Also plot the desired outputs as a set of points (not a line); use
a different symbol and a different color. This will help you monitor the network’s progress as it
tries to get all the patterns to come out right. Note: in order to superimpose two plots, you will
need to use the command hold on.

Answer: The answers to parts b and c are presented in part in the following plot of the network
output values, the desired outputs and the outputs of one hidden unit.

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Desired Output
Actual Output
Hidden Unit 1

Problem 2c. Try to analyze what the hidden unit is doing.

Answer: The input patterns, numbered 0 to 15 in the plot, have binary encodings of form DCBA,
where D is the ‘8’ bit, C the ‘4’ bit, B the ‘2’ bit, and A the ‘1’ bit. Thus, for example, input pattern
“5” has the encoding DCBA=0101. The weights between the input layer and the first hidden unit
have values Weights1 (1 , :) = [−0.0419, 1.5472, 0.0042, 1.5111,−1.6876]. (Remember that the first
number is the bias connection; its value is -0.0419.) The C unit’s weight is near zero, so the C input
is ignored by this hidden unit. The B and D units have positive weights of around 1.5, but the A
unit has a negative weight of around -1.6. So either the B or the D input is enough to activate
the hidden unit as long as the A input is off, but if the A input is on, both the B and D inputs
must be active to bring the hidden unit’s activation above zero. We can summarize the activation
conditions for this unit as: [(B ∨ D) ∧ Ā] ∨ (B ∧ D).

Problem 2d. (i) How many epochs does it take to learn this problem using 5 hidden units? Run
your network ten times and record the number of epochs each time, and the mean and standard
deviation for the ten runs. (Use Matlab’s mean and std functions.) (ii) Now run the same experi-
ment using only 4 hidden units. (iii) Now try training with 20 hidden units. (iv) How about 100
hidden units? (v) Can the network ever solve the problem with only three hidden units? Use a
learning rate of 0.015 for this experiment. (vi) Two hidden units are not enough to solve four-bit
parity. But how well can the network do, i.e., how many of the 16 inputs cases can it get right,
where “right” just means the output has the correct sign?

Answer:

Trial Number std

NHIDDENS 1 2 3 4 5 6 7 8 9 10 mean dev

(i) 5 1320 1170 1050 1140 1300 820 1740 1270 790 1390 1199 278
(ii) 4 1540 7980 1170 1020 1230 2580 2080 6850 6360 2450 3326 2661
(iii) 20 600 720 1230 690 730 860 1170 750 810 680 824 211
(iv) 100 1620 1650 2390 2080 810 770 2240 1170 1490 1850 1607 562

(v) A network with three hidden units has great difficulty learning this task, although some people
have reported success if they train for 30,000 epochs.

2

Alternate problem (v): Suppose you wanted to hand-design a network with four hidden units to
compute four-bit parity. Explain how to do this by using hidden units to test the number of 1 bits
in the input.

Answer: Let all four hidden units have weights of +1 from each of the input units. Give the first
hidden unit a bias connection of −0.2; this hidden until will only have a positive output if at least
one input is on. Give the second hidden unit a bias of −1.2; it will have a positive output only if at
least two inputs are on. Give the third hidden unit a bias connection of −2; 2, and the fourth hidden
unit a bias connection of −3.2. Give the output unit a bias of −0.2, and assign its connections from
the four hidden units weights of +1, −1, +1, and −1. The output unit will have positive activation
only if an odd number of inputs are active.

(vi) A network with 2 hidden units can get 15 of the inputs correct. Training usually results
in 7 positive and 4 negative targets being met almost exactly, with another 4 negative outputs
resulting in some intermediate non-zero value (ie. −0.5) with the correct sign. This is also the
value incorrecly learned for the remaining positive target. Or vice versa (exchange positive with
negative in this paragraph.)

3

% Four-input parity problem.

%

% David S. Touretzky. February, 2002.

Patterns = zeros(4,16);

Patterns(4,[2 4 6 8 10 12 14 16]) = 1;

Patterns(3,[3 4 7 8 11 12 15 16]) = 1;

Patterns(2,[5 6 7 8 13 14 15 16]) = 1;

Patterns(1,[9 10 11 12 13 14 15 16]) = 1;

Desired = mod(sum(Patterns,1),2)*1.6 - 0.8;

[NINPUTS,NPATS] = size(Patterns);

NHIDDENS = 5;

[NOUTPUTS,NPATS] = size(Desired);

LearnRate = 0.04;

Momentum = 0;

DerivIncr = 0.02;

deltaW1 = 0;

deltaW2 = 0;

Inputs1 = [ones(1,NPATS); Patterns];

Weights1 = rand(NHIDDENS,1+NINPUTS)-0.5;

Weights2 = rand(NOUTPUTS,1+NHIDDENS)-0.5;

TSS_Limit = 0.02;

for epoch = 1:10000

bp_innerloop

if rem(epoch,10) ==0

fprintf(’Epoch %4d: Error = %f\n’,epoch,TSS);

if TSS < TSS_Limit, break, end

clf, whitebg(gcf,[0 0 0]), hold on

axis([0 16 -1 1])

plot(0:NPATS-1,Desired,’o’)

plot(0:NPATS-1,Result2,’g*-’)

plot(0:NPATS-1,Result1(1,:),’mx’)

drawnow

end

end

legend(’Desired Output’,’Actual Output’,’Hidden Unit 1’);

4

