
Neural Networks for Time Series
Prediction

15-496/782: Artificial Neural Networks

Kornel Laskowski

Spring 2004

(based on slides by D. Touretzky, Spring 2002)

What is a Time Series?

A sequence of vectors (or scalars) which depend on time t. In this

lecture we will deal exclusively with scalars:

{ x(t0), x(t1), · · · x(ti−1), x(ti), x(ti+1), · · · }

It’s the output of some process P that we are interested in:

P x(t)

2

Examples of Time Series

• Dow-Jones Industrial Average

• sunspot activity

• electricity demand for a city

• number of births in a community

• air temperature in a building

These phenomena may be discrete or continuous.

3

Discrete Phenomena

• Dow-Jones Industrial Average closing value each day

• sunspot activity each day

Sometimes data have to be aggregated to get meaningful values.

Example:

• births per minute might not be as useful as births per month

4

Continuous Phenomena

t is real-valued, and x(t) is a continuous signal.

To get a series {x[t]}, must sample the signal at discrete points.

In uniform sampling, if our sampling period is ∆t, then

{x[t]} = {x(0), x(∆t), x(2∆t), x(3∆t), · · ·} (1)

To ensure that x(t) can be recovered from x[t], ∆t must be chosen

according the the Nyquist sampling theorem.

5

Nyquist Sampling Theorem

If fmax is the highest frequency component of x(t), then we must

sample at a rate at least twice as high:

1

∆t
= fsampling > 2fmax (2)

Why? Otherwise we will see aliasing of frequencies in the range

[fsampling/2, fmax].

6

Studying Time Series

In addition to describing either discrete or continuous phenomena,

time series can also be deterministic vs stochastic, governed by linear

vs nonlinear dynamics, etc.

Time series are the focus of several overlapping disciplines:

• Information Theory deals with describing stochastic time series.

• Dynamical Systems Theory deals with describing and manipulating

mostly non-linear deterministic time series.

• Digital Signal Processing deals with describing and manipulating

mostly linear time series, both deterministic and stochastic.

We will use concepts from all three.

7

Possible Types of Processing

• predict future values of x[t]

• classify a series into one of a few classes

“price will go up”

“price will go down” — sell now

“no change”

• describe a series using a few parameter values of some model

• transform one time series into another

oil prices 7→ interest rates

8

The Problem of Predicting the Future

Extending backward from time t, we have time series {x[t], x[t −
1], · · ·}. From this, we now want to estimate x at some future time

x[t + s] = f(x[t], x[t − 1], · · ·)

s is called the horizon of prediction. We will come back to this; in

the meantime, let’s predict just one time sample into the future,

⇒ s = 1.

This is a function approximation problem.

Here’s how we’ll solve it:

1. Assume a generative model.

2. For every point x[ti] in the past, train the generative model

with what preceded ti as the Inputs and what followed ti as the

Desired.

3. Now run the model to predict x[t + s] from {x[t], · · ·}.

9

Embedding

Time is constantly moving forward. Temporal data is hard to deal

with...

If we set up a shift register of delays, we can retain successive

values of our time series. Then we can treat each past value as an

additional spatial dimension in the input space to our predictor.

This implicit transformation of a one-dimensional time vector into

an infinite-dimensional spatial vector is called embedding.

The input space to our predictor must be finite. At each instant t,

truncate the history to only the previous d samples. d is called the

embedding dimension.

10

Using the Past to Predict the Future

x(t − 1)

x(t − 2)

x(t − T)

f x(t + 1)

x(t) tapped delay line

delay element

11

Linear Systems

It’s possible that P , the process whose output we are trying to

predict, is governed by linear dynamics.

The study of linear systems is the domain of Digital Signal Process-

ing (DSP).

DSP is concerned with linear, translation-invariant (LTI) operations

on data streams. These operations are implemented by filters. The

analysis and design of filters effectively forms the core of this field.

Filters operate on an input sequence u[t], producing an output se-

quence x[t]. They are typically described in terms of their frequency

response, ie. low-pass, high-pass, band-stop, etc.

There are two basic filter architectures, known as the FIR filter and

the IIR filter.

12

Finite Impulse Response (FIR) Filters

Characterized by q + 1 coefficients:

x[t] =
q

∑

i=0

βi u[t − i] (3)

FIR filters implement the convolution of the input signal with a given

coefficient vector {βi}.

They are known as Finite Impulse Response because, when the input

u[t] is the impulse function, the output x is only as long as q + 1,

which must be finite.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

IMPULSE FILTER RESPONSE

13

Infinite Impulse Response (IIR) Filters

Characterized by p coefficients:

x[t] =
p

∑

i=1

αi x[t − i] + u[t] (4)

In IIR filters, the input u[t] contributes directly to x[t] at time t, but,

crucially, x[t] is otherwise a weighed sum of its own past samples.

These filters are known as Infinite Impulse Response because, in

spite of both the impulse function and the vector {αi} being finite

in duration, the response only asympotically decays to zero. Once

one of the x[t]’s is non-zero, it will make non-zero contributions to

future values of x[t] ad infinitum.

14

FIR and IIR Differences

In DSP notation:

αp

α2

α1

u[t] x[t]

x[t − 1]

x[t − 2]

x[t − p]

u[t] x[t]

β1

β2

βq

β0

u[t − 1]

u[t − 2]

u[t − q]

FIR IIR

15

DSP Process Models

We’re interested in modeling a particular process, for the purpose

of predicting future inputs.

Digital Signal Processing (DSP) theory offers three classes of pos-

sible linear process models:

• Autoregressive (AR[p]) models

• Moving Average (MA[q]) models

• Autoregressive Moving Average (ARMA[p, q]) models

16

Autoregressive (AR[p]) Models

An AR[p] assumes that at its heart is an IIR filter applied to some

(unknown) internal signal, ε[t]. p is the order of that filter.

x[t] =
p

∑

i=1

αi x[t − i] + ε[t] (5)

This is simple, but adequately describes many complex phenomena

(ie. speech production over short intervals).

If on average ε[t] is small relative to x[t], then we can estimate x[t]

using

x̂[t] ≡ x[t] − ε[t] (6)

=
p

∑

i=1

wi x[t − i] (7)

This is an FIR filter! The wi’s are estimates of the αi’s.

17

Estimating AR[p] Parameters

Batch version:

x[t] ≈ x̂[t] (8)

=
p

∑

i=1

wi x[t − i] (9)






x[p + 1]
x[p + 2]

...




 =






x[1] x[2] · · · x[p]
x[2] x[3] · · · x[p + 1]
...




 ·








w1
w2
...

wp








︸ ︷︷ ︸
w

(10)

Can use linear regression. Or LMS.

Application: speech recognition. Assume that over small windows

of time, speech is governed by a static AR[p] model. To learn w is

to characterize the vocal tract during that window. This is called

Linear Predictive Coding (LPC).

18

Estimating AR[p] Parameters

Incremental version (same equation):

x[t] ≈ x̂[t]

=
p

∑

i=1

wi x[t − i]

For each sample, modify each wi by a small ∆wi to reduce the

sample squared error (x[t] − x̂[t])2. One iteration of LMS.

Application: noise cancellation. Predict the next sample x̂[t] and

generate −x̂[t] at the next time step t. Used in noise cancelling

headsets for office, car, aircraft, etc.

19

Moving Average (MA[q]) Models

A MA[q] assumes that at its heart is an FIR filter applied to some

(unknown) internal signal, ε[t]. q + 1 is the order of that filter.

x[t] =
q

∑

i=0

βiε[t − i] (11)

Sadly, cannot assume that ε[t] is negligible; x[t] would have to be

negligible. If our goal was to describe a noisy signal x[t] with specific

frequency characteristics, we could set ε[t] to white noise and the

{wi} would just subtract the frequency components that we do not

want.

Seldom used alone in practice. By using Eq 11 to estimate x[t], we

are not making explicit use of past values of x[t].

20

Autoregressive Moving Average
(ARMA[p, q]) Models

A combination of the AR[p] and MA[q] models:

x[t] =
p

∑

i=1

αix[t − i] +
q

∑

i=1

βiε[t − i] + ε[t] (12)

To estimate future values of x[t], assume that ε[t] at time t is small

relative to x[t]. We can obtain estimates of past values of ε[t] at

time t − i from past true values of x[t] and past values of x̂[t]:

ε̂[t − i] = x[t − i] − x̂[t − i] (13)

The estimate for x[t] is then

x̂[t] =
p

∑

i=1

αix[t − i] +
q

∑

i=1

βiε̂[t − i] (14)

21

Linear DSP Models as Linear NNs

DSP Filter DSP Model NN Connections

FIR MA[q] feedforward

IIR AR[p] recurrent

An AR[p] model is equivalent to:

ε(t) x(t)

x(t − 1)

x(t − 2)

x(t − p)
αp

α2

α1

ε(t)

x(t − p)

x(t − p + 1)

αp−1

αp

∑
x(t)

Train using backprop as in Eq 11.

22

Nonlinear AR[p] Models

Once we’ve moved to NNs, there’s nothing to stop us from replacing

the
∑

’s with a nonlinear activation function like tanh (
∑

).

Non-linear models are more powerful, but need more training data,

and are less well behaved (overfitting, local minima, etc).

TDNNs can be viewed as NAR[p] models.

An example of nonlinear ARMA neural net ... (next slide)

23

Nonlinear ARMA[p, q] Models

f f f f

f

∆

tr
a
in

w
it

h
ba

ck
p
r
o
p

x[t − 1]

subtract

x̂[t]

x[t − 3] x[t − 2]

ε̂[t − 3] ε̂[t − 2] ε̂[t − 1]

24

Jordan Nets

A Jordan net (without memory) can be viewed as a variant of a

NARMA model.

hidden

out

plan state

25

The Case for Alternative Memory Models

Uniform sampling is simple but has limitations.

x(t − 1)

x(t − 2)

x(t − T)

f x(t + 1)

x(t)

Can only look back T equispaced time steps. To look far into the

past, T must be large.

Large T −→ complicated model: many parameters, slow to train.

26

A Change of Notation

x̄i[t] = x[t − i + 1] (15)

This is a just a reformulation. x̄i[t] is a memory term, allowing us

to ellide the tapped delay line from our diagrams:

f x(t + 1)

x(t)

x(t − T)

x(t − 2)

x(t − 1)

x̄T+1[t]

x̄3[t]

x̄2[t]

x̄1[t]

27

Propose Non-uniform Sampling

x̄i[t] = x[t − di] , di ∈ N (16)

di is an integer delay; for example, for four inputs, d could be

{1,2,4,8}. This is a generalization. If d were {1,2,3,4}, we would

be back to uniform sampling.

28

Convolutional Memory Terms

Mozer has suggested treating each memory term as a convolution

of x[t] with a kernel function:

x̄i[t] =
t∑

τ=1

ci[t − τ] · x[τ] (17)

Delay lines, non-uniformly and uniformly sampled, can be expressed

using this notation, with the kernel function defined by:

ci[t] =

{

1 if t = di
0 otherwise

(18)

0 2 d_i 6 8 10 12
0

0.5

1

1.5

2

t

c i[t]

29

Exponential Trace Memory

The idea: remember past values as exponentially decaying weighed

average of input:

ci[t] = (1 − µi) · µ
t
i , µ ∈ (−1,+1) (19)

µi is the decay rate (a discount factor), eg. 0.99.

Each x̄i uses a different decay rate.

No outputs are forgotten; they just “fade away”.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

t

c i[t]

30

Exponential Trace Memory, cont’d

A nice feature: don’t have to do the convolution at each time step.

Compute incrementally:

x̄t[t] = (1 − µi)x[t] + µix̄i[t − i] (20)

Example: a Jordan net with memory:

hidden

out

plan state

31

Special Case: Binary Sequences

Let xi[t] ∈ {0,1}, with µ = 0.5.

Memory x̄[t] is a bit string, treated as a floating point fraction.

x[t] = {1} x̄[t] = .1
{1,0} .01
{1,0,0} .001
{1,0,0,1} .1001
{1,0,0,1,1} .11001

Earliest bit becomes least significant bit of x̄[t].

32

Memory Depth and Resolution

Depth is how far back memory goes.

Resolution is the degree to which information about individual se-

quence elements is preserved.

At fixed model order, we have a tradeoff.

• Tapped delay line: low depth, high resolution.

• Exponential trace: high depth, low resolution.

33

Gamma Memory (deVries & Principe)

ci[t] =







(
t
di

)

(1 − µi)
di+1 · µ

t−di
i if t ≥ di

0 otherwise
(21)

di is an integer; µi ∈ [0,1].

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

t

c i[t]

If di = 0, this is exponential trace memory.

As µi → 0, this becomes the tapped delay line.

Can trade depth for resolution by adjusting di and µi.

Gamma functions form a basis for a family of kernel functions.

34

Memory Content

Don’t have to store the raw x[t].

Can store any transformation we like. For example, can store the

internal state of the NN.

Example: Elman net

hidden

out

plan context

Think of this as a 1-tap delay line storing f(x[t]), the hidden layer.

35

Horizon of Prediction

So far covered many neural net architectures which could be used

for predicting the next sample in a time series. What if we need

a longer forecast, ie. not x̂[t + 1] but x̂[t + s], with the horizon of

prediction s > 0?

Three options:

• Train on {x[t], x[t − 1], x[t − 2], · · ·} to predict x[t + s].

• Train to predict all x[t + i], 1 ≥ i ≥ s (good for small s).

• Train to predict x[t +1] only, but iterate to get x[t + s] for any s.

36

Predicting Sunspot Activity

Fessant, Bengio and Collobert.

Sunspots affect ionospheric propagation of radio waves.

Telecom companies want to predict sunspot activity six months in

advance.

Sunspots follow an 11 year cycle, varying from 9-14 years.

Monthly data goes back to 1849.

Authors focus on predicting IR5, a smoothed index of monthly solar

activity.

37

Fessant et al: the IR5 Sunspots Series

IR5[t] =
1

5
(R[t − 3] + R[t − 2] + R[t − 1] + R[t] + R[t + 1])

where R[t] is the mean sunspot number for month t and IR5[t] is

the desired index.

38

Fessant et al: Simple Feedforward NN

Output: {x̂[t], · · · , x̂[t + 5]}

Input: {x[t − 40], · · · , x[t − 1]}

39

Fessant et al: Modular Feedforward NN

Output: x̂[t + 5]

x̂[t], · · · , x̂[t + 5]x̂[t + 5]

Input: {x[t − 40], · · · , x[t − 1]}

40

Fessant et al: Elman NN

Output: {x̂[t], · · · , x̂[t + 5]}

Input: {x[t − 40], · · · , x[t − 1]}

41

Fessant et al: Results

CNET Simple Modular Elman
Results on 238 Samples

heuristic Net Net Net

Average Relative Variance 0.1130 0.0884 0.0748 0.0737
Strong Errors 12 12 4 4

42

