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10.1 2-choice method

The objective is to throw n balls into n bins, where balls are inserted on after the other. For every
ball we pick two bins uniformly at random, inspect the bins and throw the ball into the bin with
lesser load (breaking ties arbitrarily).

Theorem 10.1.1 In the 2-choice method, the maximum load in any bin is w.h.p.

ln(ln(n))
ln(2)

+ O(1)

Before the going into the technical details behind the proof we will give definitions and outline the
general idea of the proof.

The height of a ball is i if it was the i-th ball to be placed in it’s bin. Observe that

( total # of balls of height i) ≥ ( total # of bins with ≥ i balls )

Let Ni be the number of bins with more than i balls and assume Ni
n ≤ αi. Then

Pr[ ball has height ≥ i + 1] ≤ α2
i

since to place a ball at height i+1 we would have to select two bins, both with balls of height more
than i. So we expect at most a fraction ≤ αi+1 ≈ α2

i of the bins to have height i + 1 (see fig 10.1).
We also notice that at most half of the bins can have more than 2 balls so α2 ≤ 1

2 . This gives the
recurrence equation

αi ≈ 1
22i−1

and so we see that αlog(log(n)) / 1
n so there are no balls with height log(log(n)) = ln(ln(n))/ ln(2).

10.2 Formal arguments

The previous argumant relied on balls behaving ”as expected”, we will now give a formal proof to
the theorem.

Lemma 10.2.1 Suppose we have marked at most an α fraction of the bins. We say that a ball
is marked if both of the bins it inspects are marked. Let X be the number of marked balls. Then
E[X] ≤ nα2.

Claim 10.2.2 Suppose α2 ≤ 9 log(n)
n , then X ≤ 2nα2 with probability at least 1− 1

n3 .
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Figure 10.1.1: Expected distribution of load on bins

Proof: We use the Chernoff bound with ε = λ/µ = nα2

µ

Pr
[
X ≥ 2nα2

] ≤ Pr
[
X − µ ≥ nα2

]

≤ exp
(
− ε2µ

2 + ε

)
= exp

(
− (λ/µ)2µ

2 + (λ/µ

)

= exp
(
− λ2

2µ + λ

)
but λ ≥ µ

≤ exp
(

λ

3

)
but λ = nα2 ≥ 9 log(n)

≤ exp (−3 log(n)) ≤ 1
n3

Now define α3 = 1
3 and αi = 2α2

i−1 for i ≥ 4. Then we have

αi = 22i−3−1 ·
(

1
3

)2i−3

and for i∗ = log2(log3/2(n + 3) we have αi∗ = 1
2n ≤ 9 log(n)/n.

We say that the bad event Ei happens if (Ni ≤ αi), where i ≤ i∗. Notice that since at most a third
of the bins can have 3 balls or more we have

Pr[E3] = Pr[N3 ≤ 1/3] = 1

Claim 10.2.3 If α2
i ≥ 9 log(n)

n then Pr[¬Ei+1] ≤ in3.
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Proof: The base case is trivial since Pr[¬E3] = 0. Notice that Ei+1 ⊆ Ei so we get

Pr[¬Ei+1] = Pr[¬Ei+1 | Ei]Pr[Ei] + Pr[¬Ei] ≤ Pr[¬Ei+1 | Ei] + Pr[¬Ei]

We have that

Pr[¬Ei+1 | Ei] = Pr
[

mark at most αi bins, and mark more than 2α2
i balls

]

By claim 10.2.2 we see that Pr[¬Ei+1 | Ei] ≤ 1/n3. And by induction we get that

Pr[¬Ei+1] ≤ 1
n3

+
i

n3
=

i + 1
n3

The union bound and this claim then gives

Pr

[⋃

i

¬Ei+1

]
≤ 1

n

So w.h.p. Ni ≤ αi as long as α2
i ≥ 9 log(n)

n , the point at which α2
i ' 9 log(n)

n is i∗ ≈ ln(ln(n))
ln(2) + O(1).

At this point, w.h.p. the number of bins with ≥ ln(ln(n))
ln(2) + O(1) balls is at most 18 log(n) by

claim 10.2.2. Now we condition on Ei∗ happening, this means that the fraction of bins with more
then i∗ balls is at most 18 log(n)/n. Then we use the union bound for k balls to get

Pr[k balls have height > i∗] ≤
(

n

k

)(
18 log(n)

n

)2k

≤
(en

k

)k
(

18 log(n)
n

)2k

≤
(

182e log2(n)
nk

)k

≈
(

O(log( n))
nk

)k

So for k = 3 we get Pr[ 3 balls or more have height > i∗] ≤ O(1)1
2 . This shows that w.h.p. the

number of balls in any bins is at most i∗ + 2 or

load ≤ ln(ln(n))
ln(2)

+ O(1) w.p. Ω(1− 1
n

)

10.3 Random graphs

Another way to show that the maximum load is O(log log(n)) is to use a random graph process.
We will build the graph G iteratively, the vertices of G correspond to the bins and each time we
probe to bins we connect them with an edge in G.
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Theorem 10.3.1 If we place n
512 balls into n bins, then max load = O(log log(n)), w.h.p.

So if we merge every 512 consecutive bins the maximum load will go up by ”only” a factor of 512,
so we get

Corollary 10.3.2 For n balls into n bins we get max load = O(log log(n)), w.h.p.

We will need two result to prove this

Claim 10.3.3 Size of G’s largest component is = O(log(n)) w.h.p.

Claim 10.3.4 For all subsets S of the vertex set, with |S| ≥ K the induced graph G[S] has average
degree ≤ 5, w.p. 1− 1

2n .

Now once we have the graph suppose we remove all vertices of degree ≤ 10 in the graph and repeat.

Claim 10.3.5 This process ends after O(log log(n)) w.h.p.

Proof: Condition on the events in the two previous claims. Now look at any component C of the
graph. Its average degree is ≤ 5 so the number of nodes with degree ≥ 10 is at most |C|/2 (this is
just Markov). So as long as we have at least K nodes in a component we will remove at least half
of the nodes in the component. Thus

# of rounds = O(log(|C|/K)) = O(log(|C|))− log(K)

but since |C| = O(log(n)) we get that after O(log log(n)) steps we’re down to K nodes.

Claim 10.3.6 If the removal process gives us a graph with K vertices and if edge ei is removed in
round t then the maximum height of ball i is ≤ 10t + K.

Proof: The balls that are removed in the first process have height ≤ 10, because each vertex that
was removed had degree ≤ 10. Similarly in the next round each ball collides with at most 9 other
balls in the process, since in the graph a vertex corresponding to a bin has at most 10 incoming
balls. Thus in the worst case max height of a ball is ≤ 20. This continues untill we have only K
balls left, but then every vertex has degree at most K − 1 so we have that max height is at most
10t + K.

These two claims prove that with high probability the maximum load is O(log log(n)). We now
only need to prove claims 10.3.3 and 10.3.4.

Proof of claim 10.3.3: We have a graph with n vertices and m = n
512 edges where we connect

vertices at random.

Pr[k + 1 vertices connected ] ≤ Pr[k edges in a set of size k + 1]

≤
(

m

k

) ((
k+1
2

)
(
n
2

)
)k

≈
(

m

k

)(
8k

n

)2k
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Now the probability that any such set exists can bounded above by the union bound

Pr[∃ a connected set of size k + 1] ≤
(

n

k + 1

)(
m

k

)(
8k

n

)2k

≤ n
(ne

k

)k ( ne

512k

)k
(

8k

n

)2k

≤ n

(
e2

8

)k

≤ 1
2n

if k = O(log(n))

which proves the claim.

Proof of claim 10.3.4: We want to show that the average degree of the graph G[S] induced by
a subset S no more than 5 w.h.p. as long as |S| ≥ K for some fixed K. Now if G[S] would have
average degree greater than 5 it would have to contain at least 5|S|

2 edges. We will now bound the
probability that S gets more than 5|S|

2 edges.

Pr
[

a set of size k gets more than
5k

2
edges

]
=

(
m

5k/2

)(
k2

n2

)5k/2

=
(

m

5k/2

)(
k

n

)5k

now the probability that such a set exists is

Pr[∃ such a set ] ≤
(

n

k

)(
m

5k/2

)(
k

n

)5k

≤
(ne

k

)k
(

ne

512(5k/2)

)5k/2 (
k

n

)5k

=
(

k

n

)3k/2

αk
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where α = e7/2

12805/2 < 1 then we use the union bound again and sum over k from K to n.

Pr[ a violating set exists ] ≤
n∑

k=K

(
k

n

)3k/2

αk

≤
√

n∑

k=K

(
k

n

)3k/2

αk +
n∑

k=
√

n

(
k

n

)3k/2

αk

≤
(

1√
n

)3K/2
√

n∑

k=K

αk +
n∑

k=
√

n

αk

≤ 1
n3K/4

√
n∑

k=K

αk + α
√

n

n−√n∑

k=0

αk

≤
(

1
n3K/4

+ α
√

n

) ∞∑

k=0

αk

=
(

1
n3K/4

+ α
√

n

)
1

1− α

So we see that for K large enough (like 4) the probability of the existance of such a set is O( 1
n3 ).
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