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5.1 Introduction

Given an undirected, weighted graph G = (V,E), and two vertices s and t, an s−t cut is a partition
of vertices into two parts [S, T ] such that s and t are on different sides of the partition. We can also
refer to the cut as the edges going across the partition [S, T ] and cost of the cut is the sum of costs of
these edges. The problem of minimum s− t cut can be solved using the duality between max flows
and min cut. In this lecture, we will see how to find a global min cut i.e mins,t∈V cost(s− t cut).

A naive approach would be to find s− t min cuts for all choices of s and t and output the minimum
cut found. This would take Cn

2 flow computations. We can do slightly better. Fix any arbitrary
vertex s. Now, compute s − t min cuts for all choices of t. Clearly, s will be on one side of the
partition in the global min cut. Thus, for any vertex t on the other side of partition, s− t min cut
will be the global min cut. Therefore, computing s− t min cuts for all choices of t will give us the
global min cut. But still we require (n− 1) max flow computations.

5.2 A Randomized Algorithm

In this lecture, we will look at a simple randomized algorithm due to Karger [1] that gives a global
min cut with high probability. For simplicity, we consider an unweighted graph. However, it can
be easily generalized to the weighted case.

Algo Min-cut
i← 0, G0 ← G
while (Gi has more than two vertices), do

Pick an edge e, uniformly at random (u.a.r) from Gi.
Gi+1 ← Contract e in Gi and remove self loops.
i← i + 1

od
Output the edges going between 2 vertices left in Gi.

Note that, when we contract an edge e, apart from the self loops(which we remove), we can also
get parallel edges. Thus, the graph obtained after contraction is a multigraph with no self loops.
Let us now prove the correctness of the algorithm.

Proposition 5.2.1 Every cut in contracted graph at step i corresponds to some cut in graph at

step j < i.

Consider a cut C in the graph Gi. If we uncontract the edge contracted in Gi−1 to obtain Gi, we
obtain a corresponding cut C ′ in the graph Gi−1. Note that C and C ′ contain exactly the same
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edges as the uncontracted edges in Gi−1 are on the same side of the cut C.

Proposition 5.2.2 Suppose the min-cut in G is of size k, then size of min-cut in Gi is greater

than or equal to k.

Any cut in Gi corresponds to a cut in G. In particular, min-cut in Gi also corresponds to some cut
in G. Thus, size of min-cut in Gi is greater than or equal to k.

Proposition 5.2.3 Gi has at least (n− i). k
2 edges.

Since the size of min-cut in Gi ≥ k, the degree of each vertex in Gi is ≥ k. Gi has (n− i) vertices.
Thus, Gi has at least (n− i). k

2 edges.

Proposition 5.2.4 Suppose C ⊆ E is a min-cut in G. If none of the edges in C are picked for

contraction ⇒ we will output C.

If none of the edges of C get contracted, then clearly we will output C. An edge e can be contracted
if either it is picked for contraction or some edge parallel to e is picked for contraction. We know
that none of the edges of C were picked for contraction. Thus, the only way an edge e ∈ C can be
contracted is if we pick some edge parallel to e. But note that if e ∈ C, then any edge parallel to e
is also in C. Hence, e can’t be contracted and we will output C.

For the sake of analysis, let us fix our favourite min-cut in G, say C.

Claim 5.2.5 Pr[C survives algorithm ] ≥ 1
nC2

.

Proof:

Pr[C survives algorithm ] = Pr[C survives when graph has 2 vertices ]

Let Event Ei = {cut C survives the iteration when graph has i vertices}.
We need to calculate Pr[E3].

Pr[E3] = Pr[E3|E4] ·Pr[E4] + Pr[E3|¬E4] ·Pr[¬E4]
= Pr[E3|E4] ·Pr[E4] + 0
= Pr[E3|E4] ·Pr[E4|E5] . . .Pr[En−1|En] ·Pr[En]

Pr[¬En] = |C|
|E(G)|

≤ k
k.n/2 = 2

n

Pr[En] =
n− 2

n

Similarily,

Pr[¬Ei|Ei+1] ≤
k

k.i/2
=

2

i

Pr[Ei|Ei+1] ≥
i− 2

i
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Hence,

Pr[E3] ≥
2

(n− 1).n
=

1
nC2

Thus, we have proved that the probability of success (i.e. cut C surviving the algorithm) is at least
1

nC2
. We can boost the probability of success by doing more independent runs of the algorithm.

Suppose we repeat the algorithm t times.

Pr[Failiure after t trials] = (1−Pr[success])t ≤ e−Pr[success]·t

Thus, if we choose t = c log n
Pr[success] ,

Pr[Failiure after t trials] ≤
1

nc

Hence, we get a small probability of failiure and whp we output a min-cut of G. From Claim 5.2.5,
we obtain the following interesting observations.

Observation 1: There are at most nC2 min-cuts in any graph.
Since, the probability that any particular min-cut C survives, is at least 1

nC2
and no two cuts can

survive simultaneously. Thus, there can be at most nC2 min-cuts in any graphs.

Observation 2: The probability of success 1
nC2

is tight. Cycle of length n is a tight example for this.

The algorithm described above works for the case of unweighted, undirected graphs. But it is quite
straightforward to extend this algorithm so that it works for weighted graphs. Instead of choosing
an edge e for contraction, uniformly at random, we choose an edge e with probability w(e)�

e′∈E
w(e′) .

A similar analysis gives us exactly the same bounds on probability of success.

5.3 Modified Randomized Algorithm

Note that, we will need Õ(n2) runs of the algorithm and in each run of the algorithm, we do n− 1
contractions. Thus, we have Õ(n3) contractions in all. We will describe a modified algorithm due
to Karger and Stein [2] that requires Õ(n2) contractions.

Modified Algo Min-Cut

1. Run Algo Min-Cut on G until we obtain a graph G1 with n√
2

vertices left.

2. Run Algo Min-Cut again on G independently, to obtain a graph G2 with n√
2

vertices.

3. C1 ←Modified Algo Min-Cut(G1).
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4. C2 ←Modified Algo Min-Cut(G2).

5. Output the better of two cuts C1 and C2.

The above algorithm performs O(n2) contractions. Let T (n) denote the number of contractions for
a graph of size n. Therefore, T (n) = 2T ( n√

2
) + O(n), and T (2) = 0. Thus, T (n) = O(n2). Now,

we prove that the probability of our favourite min cut surviving the algorithm is at least 1
2·log n .

First let us calculate the probability that C survives in G1. By a method similar to one used in
the calculation of probability of success in Algo Min-Cut, we get that Pr[C survives in G1] = 1

2 .
Similarily, Pr[C survives in G2] = 1

2 . Consider the recursion tree of the modified algorithm. Let
pd denote the probability that C survives a recursion subtree of depth d given that C survived till
the root. Therefore,

pd =
1

2
· pd−1 +

1

2
· pd−1 −

1

4
· p2

d−1

Claim 5.3.1 pd ≥
1

d+1

Proof: We prove this claim by induction.
Base Case : d = 0. Trivially true, as given that C survives at the root of a depth 0 subtree,
probability it survives the subtree is 1.
Induction Step : d ≥ 1.

pd = pd−1 −
p2

d−1

4
=

1

d
−

1

4d2
≥

1

d + 1

Hence, proved.

The depth of the recursion tree is log√2n. Thus,

Pr[C survives the algorithm] ≥
1

2 log n + 1

Therefore, if we run the algorithm O(log n) times independently, we obtain the min-cut with very
high probability and the number of contractions is only Õ(n2).
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