
15-859E: Advanced Algorithms CMU, Spring 2015
Lecture #2: Randomized MST and MST Verification January 14, 2015
Lecturer: Anupam Gupta Scribe: Yu Zhao

1 Preliminaries

In this lecture we are talking about two contents: Karger-Klain-Tarjan algorithm and MST Veri-
fication. Our setting is the same as last lecture. Let G = (V,E) to be a simple graph with vertex
set V and edge set E, where |V | = n and |E| = m. We also assume that all the weights of edges
are distinct. In Lecture 1 we saw some deterministic algorithms finding MST in time O(m log n),
O(m+ n log n) and O(m log∗ n). Our goal in this lecture is to find MST in the graph in O(m+ n)
expected time. Remember the two rules we mentioned in Lecture 1: cut rule and cycle rule.

1.1 Heavy & light

Figure 2.1: Example of heavy and light edges

Take any tree1 in a graph. For example, in Figure 2.1 we pick the tree with black edges. The tree
might not be an MST, or even not be connected (a forest). Now look at any other edge in the
graph. The blue edge on the right side is heavier than any other edge in the cycle. Then by cycle
rule this edge will not be in the MST of the graph. What about the red edge on the left side? This
edge is not the heaviest edgei n the cycle, and in fact this edge appears in the MST of the graph.
Therefore we can discard some edges which will never appear in the MST based on any given tree
of a graph.

Definition 2.1. Let T be a forest of graph G and e ∈ E(G). If e create a cycle when adding to T
and e is heaviest edge in the cycle, then we call edge e is T -heavy. Otherwise, edge e is T -light.

Every edge should be either T -heavy or T -light. Notice that if an edge e does not make a cycle,
then e is T -light. If edge e is in the tree T , edge e is also T -light. In Figure 2.1, the red edge is
T -light, the blue edge is T -heavy, and all black edges are T -light.

Fact 2.2. Edge e is T -light iff e ∈ MST(T ∪ {e}).
1Here when we talk about trees, in fact we mean trees or forests. And MST means the minimum spanning forest

if the graph is not connected.

1

Fact 2.3. If T is a MST of G then edge e ∈ E(G) is T -light iff e ∈ T .

Therefore our idea is that pick a good tree/forest T , find all the T -heavy edges and get rid of them.
Hopefully the number of edges remained is small. Then we will find the MST in remaining edges.
We want to find some tree T such that there are a lot of T -heavy edges.

1.2 Magic Blackbox

How should we find all the T -heavy edges? Here we first assume a magic blackbox: MST Verifica-
tion. We’ll show how to implement MST Verification later.

Theorem 2.4 (MST Verification). Given a tree T ⊆ G, we can output all the T -light edges in
E(G) in time O(|V |+ |E|).

This wonderful blackbox can output all the T -light edges in linear time.

2 Karger-Klain-Tarjan Algorithm

Suppose a graph G = (V,E) has n vertices and m edges. Here we will present the algorithm
KKT(G) as following.

1. Run 3 rounds of Bor̊uvka’s Algorithm on G to get a graph G′ = (V ′, E′) with n′ ≤ n/8
vertices and m′ ≤ m edges.

2. E1 ← a random sample of edges E′ of G′ where each edge is picked independently with
probability 1/2.

3. T1 ← KKT(G1 = (V ′, E1)).

4. E2 ← all the T1-light edges in E′.

5. T2 ← KKT(G2 = (V ′, E2)).

6. Return T2 (combine with the edges chosen in Step 1).

Here the idea is that we randomly choose half of the edges and find the MST on those edges. We
hope this tree T will have a lot of T -heavy edges therefore we can discard these edges and find the
MST on the remaining graph.

Theorem 2.5. KKT algorithm will return MST(G).

Proof. We can prove it by induction. For the basic case it is trivial, because we will find the MST in
Step 1. Otherwise in Step 3 we find a MST T1 of graph G1, and in E2 just discard all the T1-heavy
edges from the entire edges E′ (not only from E1!!) which are not possible to be in the MST of G′.
Or in other words, MST(G′) ⊆ E2. Therefore what Step 5 returns is the MST of G2, which is also
the MST of G′. Combine it with the edges we choose in Step 1, we get the MST of graph G.

The key idea of this proof is that discarding heavy edges of any tree in a graph will remain MST
the same.

Now we need to deal with the complexity.
2

Claim 2.6. E[#E1] = 1
2m
′.

This claim is trivial since we pick each edge with probability 1/2.

Claim 2.7. E[#E2] ≤ 2n′. This means graph G2 will be hopefully very sparse.

Figure 2.2: Illustration of another order of coin tossing

How should we analysis E[#E2]? In Step 2 of KKG algorithm, we first flip a coin on each edge,
then take all the edges tossing head and finally in Step 3 we use KKG algorithm on this new graph
to get the MST of G1.

Let’s think of this process in another order. First of all, Step 3 is to calculate the MST of the new
graph. It does not matter if we use KKG algorithm or some other method, and we will still get the
same MST. Then instead of first flipping coins for all edges then calculating the MST. We can do
these two things simultaneously: We flip the coins for the edges in an increasing order by weight,
and do Kruskal immediately after any edge tossing head.

We define a coin toss is useful, if Kruskal algorithm would like to add this edge in the MST, and
define a coin toss is useless if not. For example, Figure 2.2(a) gives a graph with coin toss result.
The solid edges are the edges with tossing head, and the dashed edges are the edges with tossing
tail. Figure 2.2(b) is the MST on all edges tossing head. Now let’s check the usefulness of all these
coin flips, as in Figure 2.2(c). In the beginning the MST is an empty set. Then the coin flip of the
first edge is useful, since it should be added into the MST. The tossing result is head, so we add
this edge into MST. The coin flip of the second edge is useful, since it should be added into the
MST. However the tossing result is tail, so sadly we can not add this edge into MST. The coin flip
of the third, forth, fifth edges are all useful, and the tossing result are all head, so we add all of
them into the MST. The coin toss of sixth edge is useless, because we will not add this edge into
MST since it will creat a cycle, so is the seventh edge.

Claim 2.8. T1 = MST(G1). e ∈ E′ is T1-light if and only if the coin flip of e is useful.

3

Proof. If the coin flip of e is useful, then at the moment we flip the coin by adding e into the MST
there is no cycle, which means either e ∈ T1 (coin tossing head), or there is no cycle in T1 ∪ {e},
or edge e is not the heaviest edge in the cycle of T1 ∪ {e}. In any of these cases, edge e is T1-light.
On the other hand, if the coin flip of e is useless, then at the moment we flip the coin there would
be a cycle if we add e into the MST, therefore edge e is T1-heavy.

Then we can prove Claim 2.7.

Proof of Claim 2.7.

E[#E2] = E[#useful coin flips] ≤ n′ − 1

1/2
≤ 2n′

The first inequality holds since by each useful coin flip we may add an edge into the MST of G1 with
probability 1/2, and the final T1 = MST (G1) has at most n′ − 1 edges. Therefore the expectation
of useful coin flips is at most 2(n′ − 1) ≤ 2n′.

Theorem 2.9. KKT(G = (V,E)) can return the MST in time O(m+ n).

Proof. Let XG be the expect running time on graph G, and

Xm,n := max
G=(V,E),|V |=n,|E|=m

{XG}

In KKG algorithm, Step 1, 2, 4 and 6 will be done in linear time, so we assume the time cost of
Step 1, 2, 4 and 6 is at most cm. Step 3 will spend time XG1 , and Step 5 will spend time XG2 .
Then we have

XG ≤ cm+XG1 +XG2 ≤ cm+Xm1,n′ +Xm2,n′

Here we assume that Xm,n ≤ c(2m+ n), then

XG = cm+ E[c(2m1 + n′)] + E[c(2m2 + n′)]

≤ c(m+m′ + 6n′)

≤ c(2m+ n)

The first inequality holds because E[m1] ≤ 1
2m
′ and E[m2] ≤ 2n′. The second inequality holds

because n′ ≤ n/8 and m′ ≤ m.

3 MST Verification

Now we come back the implement of the magic blackbox. Here we only consider about the trees
(not forests). Here we refine Theorem 2.4 as following.

Theorem 2.10 (MST Verification). Given T = (V,E) where |V | = n and m pairs of vertices
(ui, vi), we can find the heaviest edge on the path in T from ui to vi for all i in O(m+ n) time.

Tarjan find an algorithm in Time O(mα(m,n)) using Union-Find. Komlos find how to do it with
O(m + n) comparisons. Dixon-Rauch-Tarjan on RAM machine with O(m). Here we will give the
idea of Komlos.

4

Figure 2.3: Illustration of balancing a tree

3.1 Balance the tree

Suppose T = (V,E) is a tree on n vertices, and we run Boruvka’s algorithm on T . (Let V1 = V be
the original vertices at the beginning of round 1, Vi be the vertices in round i, and say there are
L rounds so that |VL+1| = 1). We build a tree T ′ as follows: the vertices are the union of all the
Vi. There is an edge from v ∈ Vi to w ∈ Vi+1 if the vertex v belongs to a component in round i
and that is contracted to form w ∈ Vi+1; the weight of this edge (v, w) is the min-weight edge out
of v in round i. (Note that all vertices in V are now leaves in T ′.) Figure 2.3 shows an example of
balancing a tree.

Fact 2.11. For nodes u, v in a tree T , let maxwtT (u, v) be the maximum weight of an edge on the
(unique) path between u, v in the tree T . For all u, v ∈ V , we have

maxwtT (u, v) = maxwtT ′(u, v)

This is a problem in Homework 1. In Figure 2.3, we have maxwtT (v1, v7) is 7 which is the weight
of edge (v4, v6). We can check that maxwtT ′(v1, v7) is also 7.

Fact 2.12. T ′ has at most log2 n layers since each vertex has at least 2 children and all leaves of
T ′ are at the bottom (the same) level..

Here we can make a balanced tree T ′ based on tree T with some good properties. Then we can just
query the heaviest edges of vertex pairs in tree T ′ instead of T . Another trick is that we can assume
that all queries are ancestor-descent queries if we can find the least common ancestor quickly.

Theorem 2.13 (Harel-Tarjan). Given a tree T , we can preprocess in O(n) time, and answer all
LCA queries in O(1) time.

5

3.2 Get the answer

Now we have reduced our question to how to answer the ancestor-descent queries efficiently. For
each edge e = (u, v) where v is the parent of u, we will look at all queries starting in subtree Tu
and ending above vertex v. Say those queries go to w1, w2, . . . , wk. Then the “query string” is
Qe = (w1, w2, . . . , wk). Then we need to calculate the “answer string” Ae = (a1, a2, · · · , ak) where
ai is the maximal weight among the edges between wi and u.

Figure 2.4: Illustration of queries and answers

Figure 2.4 gives us an example. Suppose Q(b,a) = (w1, w3, w4), which means there are three queries
starting from some vertices in the subtree of b and ending to w1, w3, w4. Then we get the answer

A(b,a) = (a1, a3, a4) = (6, 4, 4)

since the maximal weight of an edge on the path from w1 to b is the weight of edge (w1, w2), and the
maximal weight of an edge on the path from either w3, w4 to b is from the weight of edge (w3, w4).

Given the answer of A(b,a), how should we find the answer of A(c,b) efficiently? Say Q(c,b) =
(w1, w4, b). Comparing with Q(b,a), we may lose some queries since they are from some other
children of vertex b, and we may have some other queries ending at b which will not contain in
Q(b,a). The easiest way is to update every query. Suppose the weight of edge (c, b) is t. Then we
can calculate

A(c,b) = (max{a1, t},max{a4, t}, t) = (max{6, 5},max{4, 5}, 5)

The trick is that if in Qe = (w1, w2, . . . , wk), w1, w2, . . . , wk is sorted from the top to the bottom.
than the answers Ae = (a1, a2, · · · , ak) should be non-increasing, a1 ≥ a2 ≥ · · · ≥ ak. Therefore we
can do binary search to reduce the number of comparisons.

Claim 2.14. Given the question string Qe for e = (u, v) where v is the parent of u, the answer
string Ae for e , we can compute answers Ae′ for e′ = (w, u) where w is a child of u, within time
dlog(|Ae|+ 1)e.

6

Theorem 2.15. The total number of comparisons for all queries

t ≤
∑
e

log (|Qe|+ 1) ≤ O(m+ n)

Proof. Assume the number of edges in level i is ni. Here the level is counted from the bottom to
the top, the edges connected to leaves are at level 0.∑

e∈level i
log2(1 + |Qe|) = ni avg

e∈level i
(log2(1 + |Qe|))

≤ ni log2

(
1 + avg

e∈level i
(|Qe|)

)
= ni log2

(
1 +

∑
e∈level i |Qe|

ni

)
≤ ni log2

(
1 +

m

ni

)
= ni

(
log2

m+ n

n
+ log2

n

ni

)
The first inequality holds by Jensen’s inequality and convexness of function log2(1+x). The second
inequality holds since the number of all queries is m and each query will only appear on at most
one edge on any particular level. Therefore we have

t =
∑
e

log2(1 + |Qe|)

=
∑
i

∑
e∈level i

log2(1 + |Qe|)

≤
∑
i

ni

(
log2

m+ n

n
+ log2

n

ni

)
= n log2

m+ n

n
+
∑
i

ni log2
n

ni

≤ n log2
m+ n

n
+ cn

= O(n log
m+ n

n
+ n) = O(m+ n)

7

	Preliminaries
	Heavy & light
	Magic Blackbox

	Karger-Klain-Tarjan Algorithm
	MST Verification
	Balance the tree
	Get the answer

	Introduction to Game Theory

