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1 Definitions and Notations

We use G = (V, E) to denote a undirected unweighted graph, where V' and E are the set of vertices
and the set of edges respectively. We use M to denote a matching in G.

A blossom is a set of nodes and edges starting at an open vertex, with a “stem” of even number
of edges (matched and unmatched edges alternating), and a cycle of odd number of edges (again
with alternating matched and unmatched edges, but with the two edges adjacent to the stem
unmatched). A illustration is shown in Figure 8.1(a).
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Figure 8.1: An example of blossom and the toggling of the stem.

2 Edmonds Blossom Algorithm Overview

The idea of Edmonds Blossom Algorithm comes from the Berge’s Theorem, which we proved in
the previous lecture.

Theorem 8.1. Given a graph G and a matching M, M is a maximum matching if and only if
there exists no M -augmenting path.

For a blossom, we can always toggle the stem part, such that the open vertex moves to the blossom.
As an illustration, after toggling the stem from Figure 8.1(a), we get the blossom in (b), where the
vertex A is now the open vertex. After this toggling, the length of stem is zero, and the blossom is
now the part in the purple rectangle.

Here we introduce an algorithm FindAugPath to explore augmenting paths in a graph given a
matching M. There are three possible results of this algorithm:

1. It returns “No M-augmenting path”. In this case, M is the maximum matching.
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2. An augmenting path P is found. We can now augment along P, by setting M < MAP.
Recall that M AP is the symmetric difference of M and P, and is a matching of size | M|+ 1.

3. A blossom is found. Denote the blossom as B. Toggle the stem and shrink the blossom,
getting the graph G/B. Since the blossom contains an open vertex at the base (after the
toggle), the new vertex vp obtained by shrinking is an open vertex in the new graph G/B.
(This process was explained in the last lecture, but we illustrate it in Figure ??7). Call
FindAugPath on G/B and M/B and get an M/B-augmenting path P’ in G/B. Finally,
extend P’ to M-augmenting path P in G. (See Figure ?77.)

The correctness of FindAugPath are captured in the following theorem:

Theorem 8.2. The algorithm FindAugPath runs in O(m) time, and given graph G and matching
M, if there exists an M -augmenting path in G, it returns either (a) a blossom B, or (b) an M-
augmenting path.

And to ensure that if there were an M-augmenting path in G, we will indeed find an M/B-
augmenting path in G/B, and can lift this back to an M-augmenting path in the original graph,
we need the second theorem.

Theorem 8.3. Given graph G and matching M, let B be a blossom in G. There exists an M-
augmenting path in G if and only if there exists an M /B augmenting path in G/B.

Moreover, given P’, an M/B augmenting path in G/B, we can get back an M -augmenting path P
in G in O(m) time.

We will prove these theorems in the following sections. But before that, let us show why this is an
O(mn?) time algorithm.

2.1 Runtime Analysis

Observe that if we get back an M-augmenting path, we can increase the size of the matching; this
takes only O(mn) time. Else, if we get back a blossom B, we recurse on a smaller graph. This
may happen repeatedly, but after at most O(n) recursions we either return an augmenting path P
on some smaller graph or get back “No augmenting path” for an answer. In the former case, we
can lift this augmenting path back to an M-augmenting path for G; in the latter case we can use
Theorem 8.3 to claim that there was no M-augmenting in the original graph. This takes a total of
O(mn) time. And we would need to do this at most n/2 times, since each time we augment the
size of the matching by 1. The total runtime is O(mn?).

An aside: this was improved to O(n?) by Edmonds and Karp, and via a series of improvements,
finally to a runtime of O(m+/n) by Micali and V. Vazirani. The resulting algorithm is quite involved;
see a recent paper of Vijay Vazirani giving a cleaner explanation.

2.2 Proof of Theorem 8.3

We first give the proof of Theorem 8.3 as follows.

Proof. Since we can toggle the stem as stated in Section 2, we assume that the stem has length
zero, and the only one vertex in the cycle which links to two unmatched edges is open. Since all
other nodes in the blossom are matched, any edges going to vertices outside B are non-matching

edges.
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(=) Suppose there is an M-augmenting path in G, denoted as P. If P does not go through the
blossom B, the path still exists in G/B. If P goes through B, because there is only one open
vertex in B, there must exist at least open vertex v’ in G which is an end of P but is not in
B. Because vp is open in G/B, the path from v’ to vp is an M/B-augmenting path in G/B.

(<) Suppose there is an M/B-augmenting path P’ in G/B. If P’ does not go through vg, P’ still
exists in G.

If P’ goes through vg, because vg is open, it must be an end of P’; denote the other end of
P’ by s. Suppose the edge (denoted as e) which connects v in P’ is originally connecting
some vertex v in B. If v is the open vertex in B, then s to v is an augmenting path in G.
Otherwise, there is a matched edge and an unmatched edge connecting v in B respectively.
If e is matched, then go from s to v to the open vertex in B by the unmatched edge is an
M-augmenting path in G. If e is unmatched, then go from s to v to the open vertex in B by
the matched edge is an M-augmenting path in G.

Since the process to get from P’ to the M-augmenting path in G be done algorithmically in O(m)
time, this proves the second part of the theorem. ]

3 The Algorithm FindAugPath

The algorithm FindAugPath put all vertices in G in a layered structure to find an M-augmenting
path or a blossom, or correctly report that there is no M-augmenting path. The construction is
quite similar in spirit to the bipartite case, though with some differences since we may have odd
cycles.

At a high level, here’s the construction:

Mark all open vertices as being in layer 0.

Fori=10,1,2,...
Mark all unmarked nodes with a non-matching edge to level 2¢ as being in layer 2¢+1.
Mark all unmarked nodes with a matching edge to level 2¢ 4+ 1 as being in layer 27 + 2.

If there exists a “cross” edge between two nodes of the same layer, output a blossom or
augmenting path, else say “No M-augmenting path”.

An illustration of the algorithm is given in Figure 8.2. In order to argue correctness, it is worth
going over the steps again in more detail. Let L; denote the ¢-th layer vertices in the following
discussion.

1. Put all open vertices in Ly and mark them.

2. Given the even layer Lg;, construct Le;1q as follows. For each vertex u € Lg; and edge
(u,v) € E\M, do the following:

(a) v is unmarked. Then put v in Lg;y1, and mark it.

(b) v is marked. Let us look at the layer containing v.

i. v € Lo;. This means that there is an unmatched edge linking two vertices in the
same layer. This must result in an augmenting path or a blossom! Indeed, the way
we construct the layered graph, there are alternating paths P and @ from both u
and v to open vertices in Ly. If P and @ do not intersect, then P o (u,v) o @ gives



ii.

iii.

Layer 0 1 2 3 4
—————> Matched edge

em====s Unmatched edge
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Figure 8.2: An illustration of FindAugPath algorihtm

an M-augmenting path. If P and @ intersect, they must first intersect some vertex
w at an even layer, and the cycle containing w, v, w gives us the blossom, with the
stem being one path from w back to an open vertex in Lg. (Success!)

As examples, in Figure 8.2, if there is an edge connecting A and B, we find a blossom
cycle containing three vertices A, B, D, with the stem from X to D. On the other
hand, an edge connecting C' and B gives the augmenting path Y - B — C — Z.
v is in a previous even layer Lg;. If so, u should have been explored in the odd layer
L3j1, which is impossible.

v is in an odd layer. This is fine, we just observe that (u,v) is an even-odd edge.

3. Given the odd layer Lg;41, construct Lo;y9 as follows. For each vertex u € Lg;+1 and matching
edge (u,v) € M, do the following:

(a) v is unmarked. Then add v to Lg;+2, and mark v.

(b) v is marked. Again, consider what layer v belongs to.

i.

ii.

v € Lo;11. This means that there is an matching edge linking two vertices in the
same layer. This must result in an augmenting path or a blossom. The analysis is
similar to Case b(i). (Success!)

v is in previous layers. This is impossible because all previous explored vertices
are either open or matched using other edges. There cannot be a matching edge
connecting v to u.

From this construction, we observe that if the algorithm does not succeed, all edges are even-odd
edges. Now we can prove Theorem 8.2.

Proof. We now prove that if there is an M-augmenting path in G, the FindAugPath algorithm will
either return an M-augmenting path or a blossom.

For sake of contradiction, suppose that there exists an M-augmenting path P, and the algorithm
does not succeed. From the observation above, this means that when we constructed the layered
graph, each edge in G was an even-odd edge. Consider the augmenting path P, the starting open
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vertex is in Lg, which is an even layer. Thus the next vertex should be in an odd layer, and the
next one should be in an even layer, and so forth. Because there are odd number of edges in P,
there are an even number of vertices, and hence the last vertex must be in an odd layer. However,
the last vertex is open, and hence in Lg, an even layer. We get a contradiction. ]

4 The Tutte-Berge Formula

Finally, we can use the structure of Edmonds’ Blossom Algorithm to give an algorithmic proof of
the Tutte-Berge Formula. Recall this formula gave us a min-max relationship for the size of the
maximum matching in general (even non-bipartite) graphs.

MM(G) = (rjncn‘}n—i_ |U| —2odd(G\U)

(8.1)

Proof. We have already proved that MM(G) < w vU.

Next we prove that the equality is possible based on the Edmonds Blossom Algorithm. Let a set
U be all vertices in the odd levels in the FindAugPath with the maximum matching M. Since the
algorithm will not success, all edges are even-odd. Thus |odd(G\U)| = |V(G)\V(U)| = |[Veven|-
Also, we have some unexplored vertices and edges in the hierarchy. All the unexplored vertices
must be matched (otherwise they must be in Ly) with another unexplored vertex (otherwise they
should be explored). Hence the number of unexplored matching edges are half of the number of
unexplored vertices, i.e., | Mynexplored| = %\Vunexplored(G)\.

Also, since all even vertices are matched to and only matched to one vertex, and the hierarchy must
stop at some even layer, the number of even vertices equals to the number of explored matching
edges.

To conclude:

1 1
5 (TL - ‘U’ - Odd(G\U)) = 5 (’V:even‘ + ’V:)dd’ + ’Vunexplored’ + ’V;)dd’ - |‘/even’>

1
= 5(2"/0dd’ + |Vunexp10red’)

1
= |%dd| + ilvunexplored|

- ’Munexplored| + ‘Mexplored‘
= |M]|
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