
15-859E: Advanced Algorithms CMU, Spring 2015
Lecture #10: Linear Programs, and the Perfect Matching Polytope February 4, 2015
Lecturer: Anupam Gupta Scribe: Colin White

In this lecture, we will start by reviewing basic concepts and definitions for linear programming.
Then we will discuss a linear program for the minimum perfect matching problem in bipartite and
non-bipartite graphs.

1 Linear Programming

We start with some basic definitions.

Definition 10.1. A polyhedron in Rn is the intersection of a finite number of half spaces.

A polyhedron is a convex region which satisfies some number of linear constraints. A polyhedron
in n dimensions with m constraints is often written compactly as K = {Ax ≤ b}, where A is an m
by n matrix of constants, x is an n by 1 vector of variables, and b is an m by 1 vector of constants.

Definition 10.2. A polytope K ∈ Rn is a polyhedron such that ∃R > 0 where K ⊆ B(0, R).

In other words, a polytope is a bounded polyhedron. Now we can define a linear program in terms
of a polyhedron.

Definition 10.3. For some integer n, a polyhedron K, and an n by 1 vector c, a linear program
in n dimensions is

minimize

n∑
i=1

cixi subject to x̄ ∈ K

We can also have linear programs that maximize some objective function. Just flip the sign of all
components of c. Also note that K need not be bounded to have a solution. For example, the
following linear program has a solution even though the polyhedron is unbounded:

min{x1 + x2 | x1 + x2 ≥ 1}. (10.1)

Now we will present three different definitions about types of points that may appear in a polytope.

Definition 10.4. Given a polytope K, a point x ∈ K is an extreme point of K if there do not
exist x1, x2 ∈ K, x1 6= x2, and λ ∈ [0, 1], such that x = λx1 + (1− λ)x2.

In other words, an extreme point of K cannot be written as the average of two other points in K.
See Figure 10.1 for an example.

Now we move to another definition about points in K.

Definition 10.5. A point x ∈ K is a vertex of K if there exists an n by 1 vector c ∈ Rn such that
cᵀx < cᵀy for all y 6= x, y ∈ K.

1

Figure 10.1: y is an extreme point, but x is not.

So, a vertex is the unique optimizer for some objective function. Note that there may be a linear
program that does not have any vertices, as in Equation 10.1. Any assignment to x1 and x2 such
that x1 + x2 = 1 minimizes x1 + x2, but none of these are strictly better than other points on that
line. And no other objective function has a minimum in x1 + x2 ≥ 1.

Now we consider one last definition about points in K.

Definition 10.6. Given a polytope K ∈ Rn, a point x ∈ K is a basic feasible solution (bfs) to K
if there exist n linearly independent constraints in K which x satisfies at equality.

For example, let K = {aᵀi x ≤ bi} such that all constraints are linearly independent. Then x∗ is a
basic feasible solution if there exist n values of i such that aᵀi x

∗ = bi, and for the other values of i,
aᵀi x
∗ ≤ bi (x∗ must satisfy all constraints because it is in K).

As you may have guessed by now, the last three definitions are all related. In fact, the following
fact shows they are all equivalent.

Fact 10.7. Given a polyhedron K, and a point x ∈ K. Then the following are equivalent:

1. x is a basic feasible solution,

2. x is an extreme point, and

3. x is a vertex.

The proof is straightforward, and we will not present it here. Now we will show the main fact for
this section.

Fact 10.8. For a polytope K and an LP=min{cᵀx | x ∈ K}, there exists an optimal solution
x∗ ∈ K such that x∗ is an extreme point/vertex/bfs.

This fact suggests an algorithm for LPs when K is a polytope: just find all of the extreme
points/vertices/bfs’s, and pick the one that gives the minimum solution. There are only

(
m
n

)
vertices to check in K, where m is the total number of constraints and n is the dimension (because
we pick n constraints out of m to make tight).

Note that Fact 10.8 can be proven with weaker conditions than K being a polytope, but in this
lecture, we will stick to polytopes.

2

Also note that when the objective function is perpendicular to a constraint, then there could be
infinitely many solutions, but Fact 10.8 just states that there exists one optimal solution that is an
extreme point/vertex/bfs.

We finish off this section with one more definition, which will help us construct an LP for bipartite
matching in the next section.

Definition 10.9. Given x1, x2, . . . , xN ∈ Rn, the convex hull of x1, . . . , xn is

CH(x1, . . . , xn) =

{
x

∣∣∣∣∣∃λ1, . . . , λN s.t.

N∑
i=1

λi = 1, λi ≥ 0, and x =
∑

λixi

}
(10.2)

In words, the convex hull of points x1, . . . , xn is the intersection of all convex sets containing
x1, . . . , xn. From that description, it is easy to see that every convex hull is also a polytope. We
also know the following fact:

Fact 10.10. Given a polytope K, then K = CH(x | x is an extreme point of K).

2 Bipartite Matchings

Now we go back to the problem of finding a min cost perfect matching (which we have considered
in previous lectures). For now, we will stick to bipartite graphs G = (L,R,E).

Let us denote the matchings in G as bit-vectors in {0, 1}|E| For example, see Figure 10.2.

Figure 10.2: This graph has one perfect matching using edges 1, 4, 5, and 6, so we can represent it
as [1, 0, 0, 1, 1, 1].

This allows us to define an |E| dimensional polytope which contains all perfect matchings. Let us
try the obvious choice for such a polytope, and see if it gives an efficient LP:

CPM = CH(x ∈ {0, 1}|E| | x represents a perfect matching in G).

The LP to find the min cost perfect matching of a bipartite graph with edge weights defined in
vector c is

min{cᵀx | x ∈ CPM}.

Then the solution will be at a vertex of CPM , which by construction represents a perfect matching.

3

This is great news, because we do not have to deal with a fractional solution to the LP. But, there
is one problem. It is a huge pain to write down CPM . Can we find a more compact way to write
it down? Let’s try the following idea.

KPM =

{
x ∈ R|E|

∣∣∣∣∣∀l ∈ L,∑
r

xlr = 1 and ∀r ∈ R,
∑
l

xlr = 1 and x ≥ 0

}

This polytope enforces that the weights of edges leaving every vertex is 1, so it seems plausible that
it is a polytope for perfect matching. This would be much easier to use in an LP, so now we would
like to show that KPM is the same as CPM .

Theorem 10.11. KPM = CPM .

We start with the easy direction, CPM ⊆ KPM . Define χM as the indicator function for the edges
in a matching M .

Fact 10.12. CPM ⊆ KPM .

Proof. Clearly, for all perfect matchings M , χM ∈ KPM since a perfect matching satisfies the
constraints that an edge weight of 1 leaves every vertex. It follows that

CPM = CH(χM |M is a perfect matching) ⊆ KPM

Now we must show that KPM ⊆ CPM . It suffices to show that all extreme points/vertices/bfs’s
of KPM belong to CPM . We will prove this three ways, using the three definitions from the last
section.

Proof. Extreme points:

Suppose x∗ is an extreme point of KPM . We must show that x∗ ∈ CPM . Let supp(x∗) denote the
edges for which x∗e 6= 0. First we will prove that supp(x∗) is acyclic.

Suppose that supp(x∗) contains a cycle x1, x2, . . . , xl. Since the graph is bipartite, l is even. All of
these vertices are in the support, so each have nonzero weight. Then there exists an ε such that for
all xi, the weight of xi is > ε.

Then we can create a new point x∗1 ∈ K by adding ε to the weight of each xi where i is odd, and
subtracting ε to the weight of each xi, where i is even. Similarly, we define x∗2 by adding ε from the
even i’s, and subtracting ε form the odd i’s. But then x∗ = 1

2x
∗
1 + 1

2x
∗
2, violating our assumption

that x∗ is an extreme point. See Figure 10.3.

Therefore, there are no cycles in the support of x∗. So there must be a leaf v in the support. Then
the single edge leaving v must have weight 1. But this edge goes to another vertex u, and because
x∗ is in KPM , then this vertex cannot have any other edges without violating its constraint. So
u and v are a matched pair. Now take u and v out of the graph. In the remaining graph, there
cannot be a cycle for the same reason as before, so we perform the same logic inductively to show
that x∗ is a perfect matching. Then x∗ ∈ CPM .

Our second proof was covered in the last lecture.

4

Figure 10.3: There cannot be a cycle in supp(x∗), because this violates the assumption that x∗ is
an extreme point.

Proof. Vertices:

Suppose x∗ ∈ KPM is a vertex of KPM . Then it is an optimizer to some objective function. Recall
that in the last lecture, we showed that any unique cost function must be a perfect matching. So
x∗ ∈ CPM .

Now we give a proof using the definition of bfs. Recall that KPM contains 2n+m constraints: one
constraint for each of the 2n vertices forcing the weight of edges leaving that vertex to sum to 1,
and then m constraints for nonzero edge weights.

Proof. Basic feasible solutions:

Let x∗ be a basic feasible solution of KPM . Then there exist m linearly independent constraints in
KPM which are tight.

Assume that none of these tight constraints were a nonzero edge weight constraints. Then all the
tight constraints were forcing the edge weights coming out of a vertex to be 1. However, these 2n
constraints cannot all be linearly independent.

To see this, sum up all of the constraints for vertices in L.
∑

l

∑
r xlr = n. But notice that this is

exactly the same as summing up all of the constraints for vertices in R:
∑

r

∑
l xlr = n. Therefore,

these 2n constraints cannot be linearly independent. So at most 2n− 1 of the linearly independent
tight constraints in x∗ can belong to the first 2n constraints.

Then ≥ m− (2n− 1) constraints from xlr ≥ 0 are tight. So ≥ m− (2n− 1) edges have xlr = 0, so
|supp(x∗)| ≤ 2n− 1. It follows that there must be an edge with length 1. If we pull out this edge,
we can inductively perform the same argument on the smaller graph, to show that x∗ is a perfect
matching. This completes the proof.

3 Non-bipartite Matchings

Now we move to non-bipartite graphs. We define a polytope that is similar to the bipartite polytope.
Let x(δ(v)) denote the weight of all edges incident to v.

KPM = {x ∈ Rm | ∀v ∈ V , x(δ(v)) = 1, and ∀e ∈ E, xe ≥ 0}. (10.3)

5

This is not a convex combination of all perfect matchings. For example, a triange graph with each
edge weight 1

2 will satisfy the constraints of this polytope.

So we need to add more constraints to KPM . For a set of vertices S, let x(δ(S)) denote the weight
of all edges leaving S.

{∀Ssuch that |S| is odd, x(δ(S)) ≥ 1}. (10.4)

Now we claim the new KPM is the correct polytope.

Theorem 10.13. KPM = CH(all perfect matchings).

We give a sketch of the proof.

Let x∗ be a basic feasible solution in KPM (we would like to show that x∗ is a perfect matching). So
there are m linearly independent tight constraints. If there already exists an edge such that x∗e = 0,
then drop e, and argue about G \ {e}, i.e., G without edge e. If x∗e = 1, then drop e = (u, v), and
induct on G \ (u, v). Then after this process, for all v, there exist at least two edges in supp(v).
If all vertices have support degree 2, then there must be a cycle. This will cause a contradiction,
as we saw in proof 1 for bipartite graphs. Therefore, there exists a vertex with degree ≥ 3 in the
support. But then the number of edges in the support is greater than the number of vertices. From
this, we can show there is at least one x(δ(S)) ≥ 1 constraint that is tight. Call it S∗.

Take S∗, and shrink it down to one vertex. Then we induct on S∗ itself, and on the remaining
graph with the single vertex as S∗.

6

	Linear Programming
	Bipartite Matchings
	Non-bipartite Matchings

