
15-859E: Advanced Algorithms CMU, Spring 2015
Lecture #15: Max Flow using Electrical Flow February 16, 2015
Lecturer: Anupam Gupta Scribe: Jennifer Iglesias

In today’s lecture we will use electrical flows algorithms to find approximate max-flows in (unit-
capacity) undirected graphs in Õ(m4/3/poly(ε) time. As mentioned on the blog, this approach can
be extended to all undirected graphs, and the runtime can be improved to Õ(mn1/3/poly(ε). At
the time this result was announced (in 2011), it was the fastest algorithm for the problem.

1 Solving Flow Problems using Multiplicative Weights

Remember that we defined Keasy to be:

K = {f̄ |fp ≥ 0,
∑
p

fp = F}

where we have a variable fP for every s, t path P . Constraints are of the form

fe :=
∑
p:e∈p

fp ≤ 1 ∀e ∈ E

Henceforth we will use the shorthand fe :=
∑

p:e∈p fp (the flow on edge e). We have an oracle which
given weights qe for the edges, and we want to find a flow f ∈ K such that∑

e∈E
qefe ≤

∑
e∈E

qe (?)

We define the width of the oracle as the smallest ρ such that

max
e
fe ≤ ρ. (15.1)

We saw that using the multiplicative weights (MW) algorithm, we find a (1 + ε)-approximate max
flow f̂—i.e., a flow of value F that has f̂e ≤ 1 + ε—using O(ρ logm

ε2
) calls to the oracle.

In Lecture #14, we saw that using shortest-path routing, you can get ρ = F . Since we can use
Dijkstra’s O(m+ n log n) to implement the oracle, this gives an Õ(mF

ε2
) time algorithm.

Relaxed Oracle: For the rest of this section, we are going to relax the requirements for the oracle,
so that we merely want the flow to satisfy the capacity constraints approximately:∑

e∈E
qefe ≤ (1 + ε)

∑
e∈E

qe + ε (??)

This will be useful in reducing the width from F down to Õ(m1/2) and even lower.

2 Review of Electrical Networks

Given an undirected graph, we can consider it to be an electrical circuit as shown in Figure 15.1:
each edge of the original graph represents a resistor, and we connect (say, a 1-volt) battery between
s to t. This causes electrical current to flow from s (the node with higher potential) to t.

1

https://cmuadvancedalgos.wordpress.com/2015/02/17/lecture-15-max-flows-using-electrical-flows/

s t

+ -

𝜑 𝑠 = 1 𝜑 𝑡 = 0

Figure 15.1: The currents on the wires would produce an electric flow (where all the wires within
the graph have resistance 1).

2.1 Electrical Flows

How do we figure out what this electrical flow is going to be? We use the following laws we know
to hold about electrical flows.

Theorem 15.1 (Ohm’s Law). If e = (u, v) is an edge, the electrical flow fuv on this edge equals the
difference in potential (or voltage) divided by the resistance of the edge, where re is the resistance
of edge e.

Theorem 15.2 (Kirchoff’s Voltage Law). When you look at a cycle, the directed potential changes
along the cycle sum to 0.

Theorem 15.3 (Kirchoff’s Current Law). The sum of the currents entering a node is the same as
the sum of the currents leaving a node; i.e., there is flow-conservation at the nodes.

These laws give us a set of linear constraints on the electrical flow values fe, and solving this system
of linear constraints tells us what the electrical flows fe are. (For an example, see Wikipedia.)

2.1.1 The Laplacian

It turns out that we can write these linear constraints obtained above as follows, if we introduce a
convenient matrix, called the graph Laplacian. Given an undirected graph on n nodes and m edges,
define the Laplacian of a single edge uv will be a n × n matrix, which has a 1’s at the (u, u) and
(v, v) positions, −1’s at the (u, v) and (v, u) positions, and zeroes elsewhere.

Another way to write this matrix is Luv = (eu− ev)(eu− ev)T . In a general graph G, we define the
laplacian to be:

L(G) =
∑
uv∈E

Luv = diag(d(v1), . . . d(vn))−A

where A is the adjacency matrix. If we have resistances of edges re, then we get that our Laplacian:

L(G, r) =
∑
uv

1

ruv
Luv

2

http://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws#Example

If we take the 6-node graph in Figure 15.1, the resulting Laplacian Luv is given below.

Luv =



s t u v w x

s 2 0 −1 −1 0 0
t 0 2 0 0 −1 −1
u −1 0 3 0 −1 −1
v −1 0 0 2 0 −1
w 0 −1 −1 0 2 0

0 −1 −1 −1 0 3


We can distill Ohm’s and Kirchoff’s laws down to get: If we send one unit of current from s to t,
the voltage vector φ = (φv)v∈V is obtained by solving the linear system

Lφ = (es − et)

And once we have the vertex voltages φv, we can use Ohm’s law to get the current flowing on each
edge. So figuring out the electrical current on each edge, if we want to send F amperes from s to
t, we solve the system Lφ = F (χs − χt), and let fe = φu−φv

ruv
. How do we solve the linear system

Lφ = b? We can use Gaussian elimination, of course, but there are faster methods: we’ll discuss
this in Section 2.1.3.

2.1.2 Electrical Flows Minimize Energy Burn

Here’s another useful way of characterizing this flow. If we set voltages at s and t, this causes
some amount I of flow to go between s to t. But how does this I units of flow split up? This flow
happens to be the one that minimizes the total energy dissipated by the flow (subject to the flow
value being I). Indeed, for a flow f , the energy burn on edge e is f2

e re, and the total energy burn
is

E(f) =
∑
e

f2
e re.

The electrical flow produced happens to be

arg minf is an s-t flow of value I{E(f)}.

Why? Anupam to add in some text here.

2.1.3 Solving Linear Systems

How do we solve the linear system Lx = b fast? For the case when L is a Laplacian matrix, we
can do things much faster than Gaussian elimination—essentially do it in time near-linear in the
number of non-zeros of the matrix L.

Theorem 15.4 ([KMP10, KMP14]). Suppose we are given a linear system Lx = b for the case
where L is a Laplacian matrix, with solution x̄. Then we can find a vector x̂ in time O(m log2 n log(1/ε)
such that the error z := Lx̂− b satisfies zᵀLz ≤ ε(x̄ᵀLx̄).

Some history: Spielman and Teng [ST04, ST14] gave an algorithm that takes time aboutO(m 2
√

logn log logn).
Koutis, Miller, and Peng [KMP10] improved this toO(m log2 n); the current best time isO(m

√
log n).

This can be converted to what we need:

3

Theorem 15.5 ([CKM+11]). There is an algorithm given a linear system Lx = b (for L being a
Laplacian matrix), outputs in O(m logR

δ) time a flow f that satisfies E(f) ≤ (1 + δ)E(f̃), where f̃ is
the min-energy flow, and R is the ratio between the largest and smallest resistances in the network.

For the rest of this lecture we will assume that given a linear system Lx = b, we can compute the
corresponding min-energy flow exactly in time Õ(m). The argument can be extended to incorporate
the errors, etc., fairly easily.

3 Obtaining an Õ(m3/2) time Flow Algorithm

We will assume that the flow instance is feasible, i.e., that there is some flow f∗ which is in K and
satisfies all the edge constraints. Recall, our oracle takes as input q ∈ ∆m = {x ∈ [0, 1]m :

∑
e xe =

1}. We show how to implement an oracle that satisfies the weaker requirement (??) and that has
width O(

√
m/ε).

Define resistances re = qe + ε
m for all edges, compute currents fe by solving the linear

system Lφ = F (χs − χt). Return f .

This idea of setting the resistance to be qe plus a small error term is useful in controlling the width
in non-electrical flows too; see HW#4.

Theorem 15.6. If f ∈ K is the flow returned by the oracle, then

1.
∑

e∈E qefe ≤ (1 + ε)
∑

e∈E qe, and

2. maxe fe ≤ O(
√
m/ε).

Proof. Recall that flow f∗ ∈ K satisfies all the constraints, and let f ∈ K be the minimum energy
flow that we find. Then

E(f∗) =
∑
e

(f∗e)2re ≤
∑
e

re =
∑
e

(qe +
ε

m
) = (1 + ε).

Here we use that
∑

e qe = 1. But since f is the flow K that minimizes the energy,

E(f) ≤ E(f∗) ≤ 1 + ε.

By Cauchy-Schwarz, we have that:

∑
e

qefe ≤
√

(
∑
e

qef2
e)(
∑
e

qe) ≤
√

1 + ε ≤ 1 + ε

This proves the first part of the theorem. For the second part, look at the energy burned on e: this
is f2

e re ≥ f2
e
ε
m . The total energy burned is more than the energy on that single edge, so we get

that f2
e
ε
m ≤ E(f) ≤ 1 + ε, and hence

fe ≤
√

(1 + ε)m

ε
≤ 2

√
m

ε

This proves the theorem.

4

Using this oracle with the MW framework gives an algorithm which runs in time Õ(m3/2ε−5/2).
Indeed, we have to run ρ logm

ε2
iterations, where the width ρ is O(

√
m/ε), and each iteration takes

Õ(m) time due to Theorem 15.5. And this runtime is tight; see, e.g., the example here.

Unfortunately, this runtime of O(m3/2) is not that impressive: in the 1970s, Karzanov [Kar73],
and Even and Tarjan [ET75] showed how to find maximum flows exactly in unit-capacity graphs
in time O(m min(m1/2, n2/3)). And similar runtimes were given for the capacitated problem by
Goldberg and Rao in the late 1990s. Thankfully, we can take the electrical flows idea even further,
as we show in the next section.

4 A Faster Algorithm

Our target is to find an oracle with width

ρ =
m1/3 logm

ε
.

The two main ideas are:

1. We find electrical flows, but if any edge has more than ρ flow, then we kill that edge. We
show that we don’t kill too many edges—less than εF edges.

2. Each time we kill an edge, we will show that some change occurs. We will show that the
effective resistance between s and t increases by a lot each time an edge is killed.

A couple observations and assumptions:

1. We assume that F ≥ ρ, else use Ford Fulkerson to find max-flows exactly in Õ(m4/3) time.

2. Instead of using the multiplicative weights process as a black box, we will explicitly maintain
edge weights wte. We use the notation W t :=

∑
ew

t
e.

Now we will need to define the effective resistance between nodes u and v. As you know this is the
resistance offered by the whole network to electrical flows between u and v. There are many ways
of formalizing this, we’ll use the one that is most useful in this context.

Definition 15.7 (Effective Resistance). The effective resistance between s and t, denoted Rs,teff is
the energy burn if we send 1 unit of electrical current from s to t. Since we only consider the
effective resistance between s and t, we drop the superscript and merely write Reff.

Lemma 15.8 ([CKM+11]). Consider an electrical network with edge resistances re.

1. (Rayleigh Monotonicity) If we change the resistances to r′e ≥ re for all e then R′eff ≥ Reff.

2. Suppose f is an s-t electrical flow, suppose e is an edge such that f2
e re ≥ βE(f). If we set

r′e =∞, then R′eff ≥ (
Reff

1−β).

We’ll skip the proof of this (simple) lemma. Let’s give our algorithm. We start off with weights
w0
e = 1 for all e ∈ E. At step t of the algorithm:

• Find the min-energy flow f t of value F with respect to edge resistances rte = wte + ε
mW

t.

5

https://cmuadvancedalgos.wordpress.com/2015/02/17/lecture-15b-illustrative-examples/

• If there is an edge e with f te > ρ, delete e, recompute the flow f t as in the above step.

• Else update the weights wt+1
e ← wte(1 + ε

ρf
t
e).

Stop after T = ρ logm
ε2

iterations, and output f̂ = 1
T

∑
t f

t.

We want to argue like for Theorem 15.6, but note that the process deletes edges along the way,
which we need to take care of.

Claim 15.9. Suppose ε ≤ 1/10. If we delete at most εF edges from the graph, the following hold:

1. the flow f t at step t has energy E(f t) ≤ (1 + 3ε)W t.

2.
∑

ew
t
ef
t
e ≤ (1 + 3ε)W t ≤ 2W t.

3. If f̂ ∈ K is the flow eventually returned, then f̂e ≤ (1 +O(ε)).

Proof. Remember there exists a flow f∗ of value F that respects all capacities. Deleting εF edges
means there exists a capacity-respecting flow of value at least (1− ε)F . Scaling up by 1

(1−ε) , there

exists a flow f ′ of value F that uses each edge to extent 1
(1−ε) . The energy of this flow according

to resistances rte is at most

E(f ′) =
∑
e

rte(f
′
e)

2 ≤ 1

(1− ε)2

∑
e

rte ≤
W t

(1− ε)2
≤ (1 + 3ε)W t,

for ε small enough. Since we find the minimum energy flow, E(f t) ≤ E(f ′) ≤ W t(1 + 3ε). For the
second part,∑

e

wtef
t
e ≤

√
(
∑
e

wte)(
∑
e

wte(f
t
e)

2) ≤
√
W t ·W t(1 + 3ε) ≤ (1 + 3ε)W t ≤ 2W t.

The last step is very loose, but it will suffice for our purposes.

To calculate the congestion of the final flow, observe that even though the algorithm above explicitly
maintains weights, we can just appeal directly to the MW algorithm guarantee. The idea is simple:

define qte = wt
e

W t , and then the flow f t satisfies∑
e

qtef
t
e ≤ 1 + 3ε

for precisely the qt values that MW would return if we gave it the flows f0, f1, . . . , f t−1. Using the
MW guarantees, the average flow f̂ uses any edge e to at most (1 + 3ε) + ε.

Finally, all these calculations assumed we did not delete too many edges. Let us show that is indeed
the case.

Claim 15.10. We delete at most εF edges.

Proof. The proof tracks two things, the total weight W t and the s-t effective resistance Reff. First
the weight: we start at W 0 = m. When we do an update,

W t+1 =
∑
e

wte

(
1 +

ε

ρ
f te

)
= Wt +

ε

ρ

∑
e

wtef
t
e

≤W t +
ε

ρ
(2W t) (From Claim 15.9)

6

Hence we get that for T = ρ lnm
ε2

,

W T ≤W 0 ·
(

1 +
2ε

ρ

)T
≤ m · exp

(
2ε · T
ρ

)
= m · exp

(
2 lnm

ε

)
.

Now for the s-t effective resistance Reff.

• Initially, since we send F flow, there is some edge with at least F/m flow on it, and hence
with energy burn (F/m)2. So Reff at the start is at least (F/m)2 ≥ 1/m2.

• Every time we do an update, the weights increase, and hence Reff does not decrease. (This is
why we argued about the weights wte explicitly, and not just the probabilities qte.)

• Every time we delete an edge e, it has flow at least ρ, and hence energy burn at least
(ρ2)wte ≥ (ρ2) εmW

t. The total energy is at most 2W t from Claim 15.9. This means it was

burning at least β = ρ2ε
2m fraction of the total energy. Hence

Rneweff ≥
Roldeff

(1− ρ2ε
2m)
≥ Roldeff · exp

(
ρ2ε

2m

)
if we use 1

1−x ≥ e
x/2 when x ∈ [0, 1/4].

• For the final effective resistance, note that we send F flow with total energy burn 2W T ; since
the energy depends on the square of the flow, we have Rfinaleff ≤ 2WT

F 2 ≤ 2W T .

Observe that all these calculations depended on us not deleting more than εF edges. So let’s prove
that this is indeed the case. If D edges are deleted in the T steps, then we get

R0
eff exp

(
D · ρ

2ε

2m

)
≤ Rfinaleff ≤ 2W T ≤ 2m · exp

(
2 lnm

ε

)
.

Taking logs and simplifying, we get that

ερ2D

2m
≤ ln(2m3) +

2 lnm

ε

=⇒ D ≤ 2m

ερ2

(
O(lnm)(1 + ε)

ε

)
� m1/3 ≤ εF.

So, D is small enough as desired, and we don’t remove too many edges.

To end, let us note that the analysis is tight; see, e.g., the second example here.

References

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of max-
imum flow in undirected graphs. In STOC ’11, pages 273–282, New York, NY, USA,
2011. ACM. 15.5, 15.8

[ET75] S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM Journal
of Computing, 4:507–518, 1975. 3

7

https://cmuadvancedalgos.wordpress.com/2015/02/17/lecture-15b-illustrative-examples/

[Kar73] A.V. Karzanov. Tochnaya otsenka algoritma nakhozhdeniya maksimal’nogo potoka,
primenennogo k zadache ”o predstavitelyakh”. Voprosy Kibernetiki. Trudy Seminara
po Kombinatorno Matematike, 1973. Title transl.: An exact estimate of an algorithm
for finding a maximum flow, applied to the problem ”on representatives”, In: Issues of
Cybernetics. Proc. of the Seminar on Combinatorial Mathematics. 3

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
sdd linear systems. In FOCS ’10, pages 235–244, Washington, DC, USA, 2010. IEEE
Computer Society. 15.4, 2.1.3

[KMP14] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
SDD linear systems. SIAM J. Comput., 43(1):337–354, 2014. 15.4

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC ’04, pages
81–90, 2004. 2.1.3

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix
Analysis Applications, 35(3):835–885, 2014. 2.1.3

8

	Solving Flow Problems using Multiplicative Weights
	Review of Electrical Networks
	Electrical Flows
	The Laplacian
	Electrical Flows Minimize Energy Burn
	Solving Linear Systems

	Obtaining an (m3/2) time Flow Algorithm
	A Faster Algorithm

