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1 Introduction

Consider n independent identically distributed (i.i.d.) random variables X1, X2, . . . , Xn, each with
mean µ. We are interested in the sum of these random variables Sn :=

∑
iXi. Note that E[Sn] = nµ

by linearity of expectation. From the law of large numbers we know that as n tends to infinity, the
random variable Sn

n converges in probability to the mean µ, i.e. limn→∞Pr[|Sn/n−µ| > ε] = 0 for
any positive constant ε. In this lecture we are interested in understanding how far do we expect Sn
to be from its mean nµ for some finite n. To be more precise, we are interested in upper bounding
the probability Pr[|Sn − nµ| ≥ λ] for some positive λ.

1.1 Central limit theorem

We say a sequence of random variables {Xn} converges in probability to a random variable Y
(written as limn→∞Xn → Y ) if for any constant ε > 0

lim
n→∞

Pr[|Xn − Y | ≥ ε] = 0

Let N(0, 1) denote the standard normal variable (“Gaussian variable”) with mean 0 and variance

1, i.e. its probability density function is given by 1√
2π
exp

(
−x2

2

)
. The central limit theorem gives

us an idea on how far Sn is from nµ as n tends to infinity.

Theorem 18.1 (Central limit theorem). Let Sn denote the sum of n i.i.d. random variables, each
with mean µ. Then

lim
n→∞

Sn − nµ√
nσ

→ N(0, 1)

1.2 Markov’s inequality

Markov’s inequality is the most basic concentration bound.

Theorem 18.2 (Markov’s inequality). For any non-negative random variable X, we have

Pr[X ≥ λ] ≤ E[X]

λ

Proof. Let f(x) be the probability density function of X.

E[X] =

∫ ∞
0

xf(x)dx, since X ≥ 0

≥
∫ ∞
λ

xf(x)dx

≥ λ
∫ ∞
λ

f(x)dx = λPr[X ≥ λ]

1



1.3 Chebychev inequality

Theorem 18.3 (Chebychev’s inequality). For any random variable X with mean µ and variance
σ2, we have

Pr[|X − µ| ≥ λ] ≤ σ2

λ2

Proof. Let Y = (X − µ)2 be a random variable. Now using Markov’s inequality we get

Pr[Y ≥ λ2] ≤ E[Y ]

λ2

However, note that Pr[Y ≥ λ2] = Pr[|X − µ| ≥ λ].

Remark: One can obtain stronger inequalities than the Chebychev’s inequality by taking higher
moments and applying the Markov’s inequality. In particular, we define a random variable Y =

(X − µ)2t for some positive integer t and use Pr[|X − µ| ≥ λ] = Pr[Y ≥ λ2t] ≤ E[Y 2t]
λ2t

. Such
inequalities are commonly called generalized Chebychev or moment inequality. The problem with
this approach is that calculating E[Y 2t] becomes tedious for large values of t.

1.4 Examples

Consider n i.i.d. Bernoulli random variables X1, X2, . . . , Xn, i.e. Xi ∈ {0, 1} for each i, with
Pr[Xi = 0] = 1−p and Pr[Xi = 1] = p. Let Sn := Bin(n, p) :=

∑
iXi be the sum of these random

variables. Note that E[Sn] = np and Var[Sn] = np(1− p).
Example 1

(
Bin(n, 12)

)
: Here Markov’s inequality gives a bound on the probability that Sn is

away from its mean n
2 as Pr[Sn − n

2 ≥ βn] ≤ n/2
n/2+βn = 1

1+2β . However, Chebychev’s inequality

gives a much tighter bound as Pr[|Sn − n
2 | ≥ βn] ≤ n/4

β2n2 = 1
4β2n

.

Example 2
(
Bin(n, 1n)

)
: Here Markov’s inequality gives a bound on the probability that Sn is

away from its mean 1 as Pr[Sn − 1 ≥ λ] ≤ 1
1+λ . However, Chebychev’s inequality gives a much

tighter bound as Pr[|Sn − 1| ≥ λ] ≤ (1−1/n)
λ2

.

2 “Chernoff-Hoeffding” bounds

Theorem 18.4 (“Chernoff-Hoeffding” bounds). Consider n independent [0, 1] random variables
X1, X2, . . . , Xn. Let Sn := X1 + X2 + . . . + Xn, let µi := E[Xi], and let µ := E[Sn] =

∑
i E[Xi].

Then for any non-negative β we have

Upper tail : Pr[Sn ≥ µ(1 + β)] ≤ exp
(
− β2µ

2 + β

)
(18.1)

Lower tail : Pr[Sn ≤ µ(1− β)] ≤ exp
(
−β

2µ

3

)
(18.2)

Before proving the above theorem, we consider its application for example 1 (Bin(n, 12)) mentioned

in the previous section. The upper tail of the theorem gives us Pr[Sn − n
2 ≥

βn
2 ] ≤ exp(−β2n/2

2+β ).
Clearly this bound is exponentially stronger than Markov’s or Chebychev’s inequality for any
constant β.
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Proof. We only prove Eq. (18.1). The proof for Eq. (18.2) is similar.

Pr[Sn ≥ µ(1 + β)] = Pr[etSn ≥ etµ(1+β)] ∀t > 0

≤ E[etSn ]

etµ(1+β)
(using Markov’s inequality)

=

∏
E[etXi ]

etµ(1+β)
(using independence)

Assumption: For now we assume that all Xi ∈ {0, 1}, i.e. are Bernoulli random variables. We
will later show that this is actually the worst possible case.

Now using the above assumption we get E[etXi ] = 1 + µi(e
t − 1) ≤ exp(µi(et − 1)). Hence, we get

Pr[Sn ≥ µ(1 + β)] ≤
∏

E[etXi ]

etµ(1+β)

≤
∏
exp(µi(e

t − 1))

etµ(1+β)

= exp(µ(et − 1)− tµ(1 + β))

Since the above expression is true for all positive t and we wish to minimize it, we put its derivative
w.r.t. t to zero and obtain t = ln(1 + β). This gives

Pr[Sn ≥ µ(1 + β)] ≤
(

eβ

(1 + β)1+β

)µ
(18.3)

We make another observation that for all positive x the following is true x
1+x

2
≤ ln(1 + x). Hence,

we can simplify the above expression for x = β to obtain

Pr[Sn ≥ µ(1 + β)] ≤ exp
(
− β2µ

2 + β

)
Removing the assumption Xi ∈ {0, 1}: For each i in [n], we define a new Bernoulli random
variable Yi which is 0 with probability 1 − µi and is 1 with probability µi. Now note that the
function etXi is convex for any positive value of t. Thus we have E[etXi ] ≤ E[etYi ] = 1+µi(e

t−1) ≤
exp(µi(e

t − 1)), and the above proof goes through even for the general case where x ∈ [0, 1].

Example 3 (Balls and Bins): Suppose we throw n balls uniformly at random into n bins. The
problem is to bound the maximum number of balls falling into a bin. Here we observe that the
probability that a given ball falls into a given bin is 1

n . Hence, the expected number of balls into
any bin is 1. Now we use Chernoff-Hoeffding inequality to bound the probability that bin i receives
at least 1 + β balls:

Pr[Balls in bin i ≥ 1 + β] ≤ exp(− β2

2 + β
)

If we ensure that the above probability is less than 1
n2 (i.e. β = O(log n)) then even if we take

union bound over all the bins, we get that the probability that a bin receives at least 1 + β balls
is at most 1

n . Hence, we have with high probability that no bin receives more than O(log n) balls.

The correct answer for this problem is actually O
(

log n
log log n

)
, which can be obtained by using the

stronger bound given in Eq. (18.3).
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Remark: Chernoff-Hoeffding inequality also holds if the random variables are not independent
but negatively correlated, i.e. if some variables are ‘high’ then it makes more likely for the other
variables to be ‘low’. Formally, for all disjoint sets A,B and monotone increasing functions f, g, we
want

E[f(Xi : i ∈ A)g(Xj : j ∈ B)] ≤ E[f(Xi : i ∈ A)] E[g(Xj : j ∈ B)]

3 Other concentration bounds

Theorem 18.5 (Bernstein’s inequality [1]). Consider n independent random variables X1, X2, . . . , Xn

with Xi − E[Xi] ≤ b for each i. Let Sn := X1 + X2 + . . . + Xn, and let Sn have mean µ variance
σ2. Then for any non-negative β we have

Upper tail : Pr[Sn ≥ µ(1 + β)] ≤ exp
(
− β2µ

2σ2/µ+ 2βb/3

)
Theorem 18.6 (McDiarmid’s inequality [1]). Consider n independent random variables X1, X2, . . . , Xn

with Xi taking values in a set Ai for each i. Suppose a real valued function f is defined on
∏
Ai

satisfying |f(x) − f(x′)| ≤ ci whenever x and x′ differ only in the ith coordinate. Let µ be the
expected value of the random variable f(X). Then for any non-negative β we have

Upper tail : Pr[f(X) ≥ µ(1 + β)] ≤ exp
(
−2µ2β2∑

i c
2
i

)
Lower tail : Pr[f(X) ≤ µ(1− β)] ≤ exp

(
−2µ2β2∑

i c
2
i

)
Theorem 18.7 (Philips and Nelson [2] show moment bounds are tighter than Chernoff-Hoeffding
bounds). Consider n independent random variables X1, X2, . . . , Xn, each with mean 0. Let Sn =∑
Xi. Then

Pr[Sn ≥ λ] ≤ min
k≥0

E[Xk]

λk
≤ inf

t≥0

E[etX ]

etλ

Theorem 18.8 (Matrix Chernoff bounds). Consider n independent symmetric matrices X1, X2, . . . , Xn

of dimension d. Moreover, Xi � 0 and I � Xi for each i, i.e. eigenvalues are between 0 and 1. Let
µmin = λmin(

∑
E[Xi]) and µmax = λmax(

∑
E[Xi]), then

Pr
[
λmax

(∑
Xi

)
≥ µmax + γ

]
≤ d exp

(
− γ2

2µmax + γ

)
In some applications the random variables are not independent, but have limited influence on the
overall function. We can still give concentration bounds if the random variables form a martingale.

Theorem 18.9 (Hoeffding-Azuma inequality [1]). Let c1, c2, . . . , cn be n constants, and let Y1, Y2, . . . , Yn
be a martingale difference sequence with |Yi| ≤ ci for each i. Then for any t ≥ 0

Pr

[∣∣∑
i

Yi
∣∣ ≥ t] ≤ 2 exp

(
− t2

2
∑

i c
2
i

)
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