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Dynamic systems that are described by linear, constantaestf differential equations are called
linear time-invariant (LTI) systems.

2. Transfer Function of Linear Time-Invariant (LTI) Systems

The transfer function of a linear, time-invariant system isnddf as the ratio of the Laplace
transform of the output (response function), Y(sffy(t)}, to the Laplace transform of the input
(driving function) U(s) =£{u(t)}, under the assumption that all initial conditions are zero.
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Taking the Laplace transform with zero initial conditions,
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A dynamic system can be described by the following time-invariant eliffied equation:
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Taking the Laplace transform and considering zero initial conditions we have:
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The transfer function between u(t) and y(t) is given by:
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where G(s) = M(S)/N(s) is the transfer function of theaystthe roots of N(s) are call@dles of
the system and the roots of M(s) are calkerbs of the system. By setting the denominator
function to zero, we obtain what is referred to ascti@@acteristic equation:
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We shall see later that the stability of linear, SISQesgys is completely governed by the roots of
the characteristic equation.



