
Appears in Architecting Dependable Systems, de Lemos, Gacek, Romanovsky (eds)
2003, © Springer-Verlag.

Increasing System Dependability through
Architecture-based Self-repair

David Garlan, Shang-Wen Cheng, Bradley Schmerl

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
{garlan, zensoul, schmerl}@cs.cmu.edu

Abstract. One increasingly important technique for improving system depend-
ability is to provide mechanisms for a system to adapt at run time in order to
accommodate varying resources, system errors, and changing requirements. For
such "self-repairing" systems one of the hard problems is determining when a
change is needed, and knowing what kind of adaptation is required. In this pa-
per we describe a partial solution in which stylized architectural design models
are maintained at run time as a vehicle for automatically monitoring system be-
havior, for detecting when that behavior falls outside of acceptable ranges, and
for deciding on a high-level repair strategy. The main innovative feature of the
approach is the ability to specialize a generic run time adaptation framework to
support particular architectural styles and properties of interest. Specifically, a
formal description of an architectural style defines for a family of related sys-
tems the conditions under which adaptation should be considered, provides an
analytic basis for detecting anomalies, and serves as a basis for developing
sound repair strategies.

1. Introduction

One increasingly important technique for improving software-based system integrity
is providing systems with the ability to adapt themselves at run time to handle such
things as resource variability, changing user needs, and system faults. In the past,
systems that supported such self-adaptation were rare, confined mostly to domains
like telecommunications switches or deep space control software, where taking a
system down for upgrades was not an option, and where human intervention was not
always feasible. However, today more and more systems have this requirement, in-
cluding e-commerce systems and mobile embedded systems. Such systems must
continue to run with only minimal human oversight, and cope with variable resources
(bandwidth, server availability, etc.), system faults (servers and networks going down,
failure of external components, etc.), and changing user priorities (high-fidelity video
streams at one moment, low fidelity at another, etc.).

Traditionally system self-repair has been handled within the application, and at the
code level. For example, applications typically use generic mechanisms such as ex-
ception handling or timeouts to trigger application-specific responses to an observed

2 David Garlan, Shang-Wen Cheng, Bradley Schmerl

fault or system anomaly. Such mechanisms have the attraction that they can trap an
error at the moment of detection, and are well-supported by modern programming
languages (e.g., Java exceptions) and run time libraries (e.g., timeouts for RPC).
However, they suffer from the problem that it can be difficult to determine what the
true source of the problem is, and hence what kind of remedial action is required.
Moreover, while they can trap errors, they are not well-suited to recognizing “softer”
system anomalies, such as gradual degradation of performance over some communi-
cation path, or transient failures of a server.

Recently a number of researchers have proposed an alternative approach in which
system models – and in particular, architectural models – are maintained at run time
and used as a basis for system reconfiguration and repair [32]. Architecture-based
adaptation has a number of nice properties: As an abstract model, an architecture can
provide a global perspective on the system, enabling high-level interpretation of sys-
tem problems. This in turn allows one to better identify the source of some problem.
Moreover, architectural models can make “integrity” constraints explicit, helping to
ensure the validity of any system change.

A key issue in making this approach work is the choice of architectural style used
to represent a system.1 Previous work in this area has focused on the use of specific
styles (together with their associated description languages and toolsets) to provide
intrinsically modifiable architectures. Taylor et al. use hierarchical publish-subscribe
via C2 [31, 36]; Gorlick et al. use a dataflow style via Weaves [14]; and Magee et al.
use bi-directional communication links via Darwin [22].

The specialization to particular styles has the benefit of providing strong support
for adapting systems built in those styles. However, it has the disadvantage that a
particular style may not be appropriate for an existing implementation base, or it may
not expose the kinds of properties that are relevant to adaptation. For example, differ-
ent styles may be appropriate depending on whether one is using existing client-server
middleware, Enterprise JavaBeans (EJB), or some other implementation base. More-
over, different styles may be useful depending on whether adaptation should be based
on issues of performance, reliability, or security.

In this paper we show how to generalize architecture-based adaptation by making
the choice of architectural style an explicit design parameter in the framework. This
added flexibility allows system designers to pick an appropriate architectural style in
order to expose properties of interest, provide analytic leverage, and map cleanly to
existing implementations and middleware.

The key technical idea is to make architectural style a first class run time entity. As
we will show, formalized architectural styles augmented with certain run time mecha-
nisms provide a number of important capabilities for run time adaptation: (1) they
define a set of formal constraints that allow one to detect system anomalies; (2) they
are often associated with analytical methods that suggest appropriate repair strategies;
(3) the allow one to link stylistic constraints with repair rules whose soundness is
based on corresponding (style-specific) analytical methods; (4) they provide a set of
operators for making high-level changes to the architecture; (5) they prescribe what
aspects of a system need to be monitored.

1 By “architectural style” we mean a vocabulary of component types and their interconnections,

together with constraints on how that vocabulary is used.

Increasing System Dependability through
Architecture-based Self-repair 3

In the remainder of this paper we detail the approach, focusing primarily on the
role of architectural styles to interpret system behavior, identify problems, and sug-
gest remediation. To illustrate the ideas we describe how the techniques have been
applied to self-repair of an important class of web-based client-server systems, based
on monitoring of performance-related behavior. As we will show, the selection of an
appropriate architectural style for this domain permits the application of queuing-
theoretic analysis to motivate and justify a set of repair strategies triggered by detec-
tion of architectural constraint violations.

2. Related Work

Considerable research has been done in the area of dynamic adaptation at an imple-
mentation level. There are a multitude of programming languages and libraries that
provide dynamic linking and binding mechanisms, as well as exception handling
capabilities (e.g., [8, 16, 18, 27]). Systems of this kind allow system self-repair to be
programmed on a per-system basis, but do not provide external, reusable mechanisms
that can be added to systems in a disciplined manner per se, as with an architecture-
driven approach.

Our work is also related to distributed debugging systems, insofar as remotely
monitoring a running system to locate problems [15]. However, those systems have
focused on user-mediated monitoring, whereas our research is primarily concerned
with automated monitoring and reconfiguration. Adaptive or reflective middleware
attempts to provide some automated support for adaptation of distributed applications,
through shared infrastructure for component integration. An adaptive middleware
supports inspection and modification of its internal state, and enables high-level ab-
straction for greater ease in controlling the lower-level services provided by the mid-
dleware [1, 20]. This work is similar to ours in that the middleware maintains an ex-
plicit representation of its internal structure and uses that model to adjust its proper-
ties. While adaptive middleware technology gives an application greater flexibility to
adapt to changing requirements and environments, it is focused at adapting shared
infrastructure. Our work in contrast also allows adaptation of the applications running
on top of such infrastructure.

The most closely related research is the work on architecture-based adaptation,
mentioned earlier. As we noted, the primary difference between our work and earlier
research in this area is the decoupling of style from the adaptive system infrastructure
so that developers have the flexibility to pair an appropriate style to a system based on
its implementation and the system attributes that should drive adaptation. To accom-
plish this we have to introduce some new mechanisms to allow “run time” styles to be
treated as a design parameter in the run time adaptation infrastructure. Specifically,
we must show how styles can be used to detect problems and trigger repairs. We must
also provide mechanisms that bridge the gap between an architectural model and an
implementation – both for monitoring and for effecting system changes. In contrast,
for systems in which specific styles are built-in (as with [14, 35]) this is less of an
issue because architectures are closely coupled to their implementations by construc-
tion.

4 David Garlan, Shang-Wen Cheng, Bradley Schmerl

Finally, there has been some work on formally characterizing architectural styles,
and using them as a basis for system analysis [12, 35]. Our research extends this by
showing how to turn “style as a design time artifact” into “style as a run time artifact”.
As we will see, this change requires two significant additions to the usual notion of
style as a set of types and constraints: (1) style-specific repair rules, and (2) style-
specific change operators. Some other efforts in this area have investigated formal
foundations for dynamic architectures in terms of graph grammars and protocols, but
have not attempted to use those formal descriptions as part of the run time adaptation
infrastructure [3, 24, 40].

3. Overview of Approach

Our starting point is an architecture-based approach to self-adaptation, similar to [32]
(as illustrated in Figure 1): In a nutshell, an executing system (1) is monitored to
observe its run time behavior; (2) Monitored values are abstracted and related to ar-
chitectural properties of an architectural model; (3) Changing properties of the archi-
tectural model trigger architectural analysis to determine whether the system is oper-
ating within an envelope of acceptable ranges; (4) Unacceptable operation causes
repairs, which (5) adapt the architecture; (6) Architectural changes are propagated to
the running system.

Architecture Manager

 Architectural Style

Analyzer

Arch.
Model

 G
en

er
ic

AP

I

Repair Handler

Style API
Interpreter

Translator

Runtime
Manager

Executing
System

11

22

33

4455

66

Monitoring
Mechanisms

Fig. 1. Adaptation Framework

Increasing System Dependability through
Architecture-based Self-repair 5

The key new feature in this framework is the use of style as a first class entity that
allows one to tailor the framework to the application domain, and determines the
actual behavior of each of the parts. Specifically, style is used to determine (a) what
properties of the executing system should be monitored, (b) what constraints need to
be evaluated, (c) what to do when constraints are violated, and (d) how to carry out
repair in terms of high-level architectural operators. In addition we need to introduce
a style-specific translation component to manage the transactional nature of repair and
map high-level architecture operations into lower-level system operations.

To illustrate how the approach works, consider a common class of web-based cli-
ent server applications that are based on an architecture in which web clients access
web resources by making requests to one of several geographically distributed server
groups (see Figure 2). Each server group consists of a set of replicated servers, and
maintains a queue of requests, which are handled in FIFO order by the servers in the
server group. Individual servers send their results directly to the requesting client.

The organization that manages the overall web service infrastructure wants to
make sure that two inter-related system qualities are maintained. First, to guarantee
quality of service for the customer, the request-response latency for clients must be
under a certain threshold (e.g., 2 seconds). Second, to keep costs down, the set of
currently active servers should be kept as loaded as possible, subject to the first con-
straint.

Since access loads in such a system will naturally change over time, the system has
two built-in low-level adaptation mechanisms. First, we can activate a new server in a
server group or deactivate an existing server. Second, we can cause a client to shift its
communication path from one server group to another.

The challenge is to engineer things so that the system adapts appropriately at run
time. Using the framework described above, here is how we would accomplish this.

Fig. 2. Deployment Architecture of Example System.

Client 1

Client 4

Req-queue

Server 1
Server 2

Server 3
ServerGrp1

Client 3

Client 5
Replies to
Client2

Client 2

Requests

6 David Garlan, Shang-Wen Cheng, Bradley Schmerl

First, given the nature of the implementation, we decide to choose an architectural
style based on client-server in which we have clients, server groups, and individual
servers, together with the appropriate client-server connectors (see Figure 3). Next,
because performance is the key quality attribute of concern, we adapt that style so that
it captures performance-related properties and makes explicit constraints about ac-
ceptable performance (see Figure 4). Here, client-server latency and server load are
the key properties, and the constraints are derived from the two desiderata listed
above. Furthermore, because of the nature of communication we are able to pick a
style for which formal performance analyses exist – in this case M/M/m-based queu-
ing theory.

To make the style useful as a run time artifact we now augment the style with two
specifications: (a) a set of style-specific architectural operators, and (b) a collection of
repair strategies written in terms of these operators and associated with the style’s
constraints. The operators and repair strategies are chosen based on an examination of
the analytical equations, which formally identify how the architecture must change in
order to affect certain parameters (like latency and load).

There are now only two remaining problems. First, we must get information out of
the running system. To do this we employ low-level monitoring mechanisms that
instrument various aspects of the executing system. We can use existing off-the-shelf
performance-oriented “system probes,” which we detail later. To bridge the gap be-
tween low-level monitored events and architectural properties we use a system of
adapters, called “gauges,” which aggregate low-level monitored information and
relate it to the architectural model. For example, we have to aggregate various meas-
urements of the round-trip time for a request and the amount of information trans-
ferred to produce bandwidth measurements at the architectural level.

The second problem is to translate architectural repairs into actual system changes.
To do this we write a simple table-driven translator that can interpret architectural
repair operators in terms of the lower level system modifications that we listed earlier.
In the running system the monitoring mechanisms update architectural properties,
causing reevaluation of constraints. Violated constraints (high client-server latencies,
or low server loads) trigger repairs, which are carried out on the architectural model,
and translated into corresponding actions on the system itself (adding or removing
servers, and changing communication channels). The existence of an analytic model
for performance (M/M/m queuing theory) helps guarantee that the specific modifica-
tion operators for this style are sound. Moreover, the matching of the style to the
existing system infrastructure helps guarantee that relevant information can be ex-
tracted, and that architectural changes can be propagated into the running system.

4. Style-based Adaptation

In this section, we discuss in more detail each aspect of the architectural adaptation
framework. We begin with an introduction on software architecture and architectural
styles, and proceed to discuss the changes to these ideas necessary to make them
available and useful for dynamic adaptation. We then discuss the techniques for ob-

Increasing System Dependability through
Architecture-based Self-repair 7

serving and affecting the running system. In the next section, we give an example of
the entire architectural style based on the example introduced in Section 3.

4.1 Architectural Models and Styles

The centerpiece of our approach is the use of stylized architectural models. Although
there are many modeling languages and representation schemes for architecture, we
adopt a simple approach in which an architectural model is represented as an anno-
tated, hierarchical graph.2 Nodes in the graph are components, which represent the
principal computational elements and data stores of the system. Arcs are connectors,
which represent the pathways of interaction between the components. Components
and connectors have explicit interfaces (termed ports and roles, respectively). To
support various levels of abstraction and encapsulation, we allow components and
connectors to be defined by more detailed architectural descriptions, which we call
representations.

To account for semantic properties of the architecture we allow elements in the
graph to be annotated with extensible property lists. Properties associated with a con-
nector might define its protocol of interaction, or performance attributes (e.g., delay,
bandwidth). Properties associated with a component might define its core functional-
ity, performance attributes (e.g., average time to process a request, load, etc.), or its
reliability.

Representing an architecture as an arbitrary graph of generic components and con-
nectors has the advantage of being extremely general and open ended. However, in
practice there are a number of benefits to constraining the design space for architec-
tures by associating a style with the architecture. An architectural style typically de-
fines a set of types for components, connectors, interfaces, and properties together
with a set of rules that govern how elements of those types may be composed .

Requiring a system to conform to a style has many benefits, including support for
analysis, reuse, code generation, and system evolution [12, 35, 38]. Moreover, the
notion of style often maps well to widely-used component integration infrastructures
(such as EJB, HLA, CORBA), which prescribe the kinds of components allowed and
the kinds of interactions that may take place between them.

As a result, a number of Architecture Description Languages (ADLs) and their
toolsets have been created to support system development and execution for specific
styles. For example, C2 [36] supports a style based on hierarchical publish-subscribe;
Wright [2, 3] supports a style based on formal specification of connector protocols;
MetaH [38] supports a style based on real-time avionics control components.

In our research we adopt the view that while choice of style is critical to supporting
system design, execution, and evolution, different styles will be appropriate for dif-
ferent systems. For example, a client-server system, such as the one in our example,
will most naturally be represented using a client-server style. In contrast, a signal
processing system would probably adopt a dataflow-oriented pipe-filter style. While
one might encode these systems in some other style, the mapping to the actual system

2 This is the core architectural representation scheme adopted by a number of ADLs, including

Acme [12], xArch [8], xADL [9], ADML [30], and SADL [27].

8 David Garlan, Shang-Wen Cheng, Bradley Schmerl

would become much more complex, with the attendant problems of ensuring that any
observation derived from the architecture has a bearing on the system itself.

For this reason, two key elements of our approach are the explicit definition of
style and its accessibility at run time for system adaptation. Specifically, we define a
style as a system of types, plus a set of rules and constraints. The types are defined in
Acme [12], a generic ADL that extends the above structural core framework with the
notion of style. The rules and constraints are defined in Armani [26] a first-order
predicate logic similar to UML’s OCL [29], augmented with a small set of architec-
tural functions. These functions make it easier to define logical expressions that refer
to things like connectedness, type conformance, and hierarchical relationships.3 We
say that a system conforms to a style if it satisfies all of the constraints defined by the
style (including type conformance).

An example of an architectural style is a pipe-filter style. Elements in this style in-
clude filter components, which receive data and transform that data, and pipe connec-
tors, which transfer data between filters. In Acme, the definition of a filter component
type looks like:

This type definition would be instantiated in a given systems by creating specific

filter components. Any component conforming to the FilterT type would have at least
the throughput property, and the two ports stdIn and stdOut, which in turn need to con-
form to the port types InputPortT and OutputPortT.

Being able to define styles in Acme gives some reuse in our framework. We envi-
sion a suite of general styles (along with monitoring and repair capabilities) from
which a style can be chosen to be plugged into our framework. An architect would
then need to model the system according to this style, perhaps extending the style or
utilizing other styles to model attributes of interest.4

4.2 Analytical Methods for Architectures

As we argued above, one of the main benefits of style-based architectural modeling is
the ability to use analytical methods to evaluate properties of a system’s architectural
design. For example, MetaH uses real-time schedulability analysis, and Wright uses
protocol model checking. Use of the appropriate analytical methods helps us to focus
on the aspects of the architecture that we need to model, to identify the constraints of
the style, and to guide the error resolution when constraints are violated. For instance,

3 Details on Acme and Armani can be found elsewhere [12, 26]. Here we focus on how those

representation schemes, originally developed as design-time notations, are extended and used
to support run time adaptation.

4 A style would also supply operators to modify the style, and perhaps repair facilities. These
are discussed later in the section.

Component type Filter T = {
 Property throughput : float;
 Port stdIn : InputPortT;
 Port stdOut : OutputPortT;
}

Increasing System Dependability through
Architecture-based Self-repair 9

in a Service-Coalition style, cost analysis of the system indicates which services to
monitor. Based on what factors drive cost—for example, performance—we can add to
or refine cost-based constraints to take those factors into account. This can help guide
us to the cause of error when a cost constraint fails. If performance were a factor, a
cost violation in a particular component would suggest that we check the performance
properties of that component for the cause. Furthermore, cost-benefit analysis would
tell us how to trade-off cost with performance to find a better service during adapta-
tion.

An analytical method can potentially be applied to several different styles. For ex-
ample, one might use queuing theoretic analysis in a Client-Server style or a Pipe-
Filter style, and cost-benefit analysis can be applied to almost any style. When applied
to a particular style, however, the analytical method takes on the vocabulary of that
style, and often augments elements of that style with analysis-specific properties. For
example, queuing theoretic analysis augments a server component with properties
such as load, service time, etc.

4.3 Using Styles to Assist Adaptation

The representation schemes for architectures and style outlined above were originally
created to support design-time development tools. In this section we show how styles
can be augmented to function as run time adaptation mechanisms. We then consider
the supporting run time infrastructure needed to make this work out in practice (Sec-
tion 4.4).

Two key augmentations to style definitions are needed to make them useful for run
time adaptation: (1) the definition of a set of adaptation operators for the style, and (2)
the definition of a set of repair strategies.

4.3.1 Adaptation Operators
The first extension is to augment a style description with a set of operators that define
the ways one can change instances of systems in that style. Such operators determine
a “virtual machine” that can be used at run time to adapt an architectural design.

Given a particular architectural style, there will typically be a set of natural opera-
tors for changing an architectural configuration and querying for additional informa-
tion. In the most generic case, architectures can provide primitive operators for adding
and removing components and connectors [31]. However, specific styles can often
provide much higher-level operators that exploit the restrictions in that style and the
intended implementation base. For example, a client-server style might support an
operation to replicate a server to improve performance, whereas a pipe-filter style
might support an operation to improve performance by adding a filer to compress the
data on a pipe.

Two key factors determine the choice of operators for a style. First is the style it-
self – the kinds of components, connectors and configuration rules. Based on its con-
straints, a style can both limit the set of operations, and also suggest a set of higher-
level operators. For example, if a style specifies that there must be exactly one in-
stance of a particular type of component, such as a database, the style should not

10 David Garlan, Shang-Wen Cheng, Bradley Schmerl

provide operations to add or remove an existing instance of this type. On the other
hand, if another constraint says that every client component in the system must be
attached to the (unique) database, it would make sense that a “new-client” operation
would automatically create a new client-database connector and attach it between the
new component and the database. These style-specific operators are defined in terms
of style-neutral operators such as “add a component” or “remove a connector.” The
definition of these style-neutral operations can be based on [40] or [41].

The second factor is the feasibility of carrying out the change. To evaluate feasibil-
ity requires some knowledge of the target implementation infrastructure. It makes no
sense to prescribe an architectural operator that has no hope of ever being carried out
on the running system. For some styles, the relation is defined by construction (since
implementations are generated from architectures). More generally, however, the
style designer may have to make certain assumptions about the availability of imple-
mentation-changing operators that will be provided by the run time environment of
the system. (We return to this issue in Section 7.)

It is important to note that, while it is necessary to write adaptation operators for
each style, we anticipate that this will only need to be done once for each style. A
style should provide all operations that make sense in changing the style, regardless of
any particular adaptation that might occur. For example, for a Client-Server style, the
moveClient operator will be the same regardless of the adaptation being performed.

While adaptation operators are specific to styles we can, however, describe some,
commonly occurring operators. In general, every style would be expected to have
some form of add and remove, as well as possibly activate and deactivate operators
for component instances (e.g., addClient, removeFilter, activateServer, deactivateDB). A style
would also be expected to have add/remove or connect/disconnect operators to setup
connectors between components (e.g., addRPC, removeVideoStream, connectPipe, discon-
nectSQL). In addition, there will typically be operators to create, delete, and modify
element properties (e.g., createLatencyProperty, deleteFrameRateProperty, modifyCompression-
Property). Finally, depending on the style, there might conceivably be operators for
changing a component’s behavior via modification of specific properties of the com-
ponent, such as changing the internal behavioral protocol of a component.

4.3.2 Repair Strategies
The second extension to the traditional notion of architectural style is the specification
of repair strategies that correspond to selected constraints of the style. The key idea is
that when a stylistic constraint violation is detected, the appropriate repair strategy
will be triggered.

Describing Repair Strategies
A repair strategy has two main functions: first to determine the cause of the problem,
and second to determine how to fix it. Thus the general form of a repair strategy is a
sequence of repair tactics. Each repair tactic is guarded by a pre-condition that deter-
mines whether that tactic is applicable. The evaluation of a tactic’s pre-condition will
usually involve the examination of various properties of the architecture in order to
pinpoint the problem and determine applicability. If it is applicable, the tactic exe-

Increasing System Dependability through
Architecture-based Self-repair 11

cutes a repair script that is written as an imperative program using the style-specific
operators described above.

To handle the situation that several tactics may be applicable, the enclosing repair
strategy decides on the policy for executing repair tactics. It might apply the first
tactic that succeeds. Alternatively, it might sequence through all of the tactics, or use
some other style-specific policy.

The final complication associated with repair strategies is the use of transactions.
The body of a repair strategy is typically enclosed within a transactional scope so that
if an error occurs during the execution of a repair, the system can abort the repair,
leaving the architecture in a consistent state. Failure of a repair strategy can be caused
by a number of factors. For example, it may be the case that none of the tactics have
applicable firing conditions. Or, an applicable tactic may find that conditions of the
actual system or its environment do not permit it to carry out its repair script. Transac-
tion aborts cause the system to inform the user of a system error that cannot be han-
dled by the automated mechanisms.

Choosing Tactics
One of the principal advantages of allowing the system designer to pick an appropri-
ate style is the ability to exploit style-specific analyses to determine whether repair
tactics are sound. By sound, we mean that if executed, the changes will help reestab-
lish the violated constraint.

In general, an analytical method for an architecture will provide a compositional
method for calculating some system property in terms of the properties of its parts.
For example, a reliability analysis will depend on the reliability of the architectural
parts, while a performance analysis will depend on various performance attributes of
the parts. By looking at the constraint to be satisfied, the analysis can often point the
repair strategy writer both to the set of possible causes for constraint violation, and for
each possible cause, to an appropriate repair.

For instance, one type of analysis appropriate to the pipe-filter style is throughput
analysis. Such an analysis allows one to characterize a batch-processing pipe-filter
system by the ratio of the input quantity to the output quantity (say, in terms of re-
cords), and compose the overall ratio from the ratio of each individual filter based on
connection topology. The administrator of this system might want to enforce a con-
straint on the system in terms of this input-output ratio. Violation of this throughput
ratio constraint suggests congestion of processing within the system. The associated
repair strategy can then use a more fine-grained throughput analysis to pinpoint the
segment or the particular filter causing the congestion.

4.4 Bridging the Gap to Implementation

As we have argued, the use of style allows us to provide automated support for archi-
tectural adaptation at the model level. That is, we can use the constraints, operators,
and analytical methods to determine how to modify the architecture.

The only catch is that we somehow have to relate all of that to the real world.
There are two parts to this. The first is getting information out of the executing system

12 David Garlan, Shang-Wen Cheng, Bradley Schmerl

so we can determine when architectural constraints are violated. The second is propa-
gating architectural repairs into the system itself.

4.4.1 Monitoring
In order to provide a bridge from system level behavior to architecturally-relevant
observations, we have defined a three-level approach illustrated in Figure 8. This
monitoring infrastructure is described in more detail elsewhere [13]: here we summa-
rize the main features, stressing the connection with style specifications.

The lowest level is a set of probes, which are “deployed” in the target system or
physical environment.5 Probes monitor the system and announce observations via a
“probe bus.” At the second level a set of gauges consumes and interprets lower-level
probe measurements in terms of higher-level model properties. Like probes, gauges
disseminate information via a “gauge reporting bus.” The top-level entities in Figure 8
are gauge consumers, which consume information disseminated by gauges. Such
information can be used, for example, to update an abstraction/model, to make system
repair decisions, to display warnings and alerts to system users, or to show the current
status of the running system.

The separation of the monitoring infrastructure into these parts helps isolate sepa-
rable concerns. Probes are highly implementation-specific, and typically require de-
tailed knowledge of the execution environment. Gauges are model-specific. They
need only understand how to convert low-level observations into properties of more
abstract representations, such as architectural models. Finally, gauge consumers are
free to use the interpreted information to cause various actions to occur, such as dis-
playing warnings to the user or automatically carrying out repairs.

In the context of architectural repair, we use the architectural style to inform us
where to place gauges. Specifically, for each constraint that we wish to monitor, we
must place gauges that dynamically update the properties over which the constraint is
defined. In addition, our repair strategies may require additional monitored informa-
tion to pinpoint sources of problems and execute repair operations.

5 For monitoring, we utilize the terminology defined by the DASADA program, funded by

DARPA.

Abstraction
/ model

Target system
/ environment

Gauge
consumers

Gauges

Probes

Gauge
reporting bus

Probe bus

report report

observation observation

Fig. 3. Gauge Infrastructure.

Increasing System Dependability through
Architecture-based Self-repair 13

While it may be necessary to develop gauges for each different style, and probes
for each specific implementation, we can gain some leverage by using general moni-
toring technologies. For example, if the concerns are bandwidth or latency then it is
possible to use general network gauges (for example, those based on Remos [13]) to
report the bandwidth, regardless of the adaptation. Similarly, it is possible to use
general probe technology to ameliorate the task of writing probes for particular im-
plementations. For example, while it might be necessary to choose which particular
method calls need to be monitored in a particular implementation, it is possible to use
existing technologies like ProbeMeister [39] to generate the actual probes, without
writing any additional code.

4.4.2 Repair Execution
The final component of our adaptation framework is a translator that interprets repair
scripts as operations on the actual system (Figure 1, item 6). As we noted earlier, we
assume that the executing system provides a set of system-changing operations via a
Runtime Manager. The nature of these operations will depend heavily on the implemen-
tation platform. In general, a given architectural operation will be realized by some
number of lower level system reconfiguration operations. Each such operator can
raise exceptions to signal a failure. The Translator then propagates them to the model
level, where transaction boundaries can cause the repair strategy to abort.

Even though the system-changing operations are system specific, the mechanisms
for propagating system changes can be fairly general, subject to the constraints of the
implementation platform. These mechanisms can be as simple as socket communica-
tion, RPC, or Java RMI, or as complicated as mobile-code or an entire change propa-
gation technology.

4.4.3 Putting the Pieces Together
Let us summarize how the parts work together, end-to-end, and how pieces of the
framework in Figure 1 interact. While the system is running, relevant system proper-
ties are observed and collected by gauges in the Monitoring Mechanisms and updated on
the Architectural Model. Whenever there is a change in a gauge value, the Analyzer in the
Architecture Manager re-evaluates the architectural constraints to check for violation.
Suppose that a latency constraint violation is detected in some Client role, then the
Analyzer calls the Repair Handler to trigger a repair. The Repair Handler first signals the
Analyzer to suspend all monitoring and captures a “snapshot” of the current state of the
Architectural Model – doing so prevents other constraint violation from interfering with
the present repair and preserves the property values at the time of constraint violation
to facilitate decision-making. The Repair Handler then begins running the repair script.

The Repair Handler executes repair scripts, which involve calls to the style opera-
tors. These calls are executed by the Style API Interpreter, which interprets the calls as
primitive architectural operators to update the Architectural Model (via the Generic API).
The Style API Interpreter also passes the style operator calls to the Translator.

The Translator translates architectural style operations into implementation opera-
tions and passes them to the Runtime Manager, which executes it to make changes to
the Executing System. The implementation operations have exceptions not shown that
may be raised if execution fails. The Translator would then pass the exception signal

14 David Garlan, Shang-Wen Cheng, Bradley Schmerl

back to the Repair Handler, which aborts the repair transaction. Whether the repair
transaction commits or aborts the Repair Handler signals to the Analyzer to resume sys-
tem monitoring and resets appropriate gauges.

At this point, as part of the dynamic verification to ensure that the repair was effec-
tive, the constraints are re-evaluated to determine whether any violations are now
fixed, and the repair cycle completes. If a violation remains, or if a new violation is
detected, the repair is triggered again and the process repeats.

5. Performance Adaptation of a Web-Based Server-Client System

In this section we give a detailed end-to-end description of how each of the elements
in our adaptation framework come together to achieve runtime adaptation. We use the
example described in Section 3 to illustrate our technique. The example is simple load
balancing of a web-based client-server system. This is example is used simply to
illustrate how our technique works; we are not proposing that this technique be ap-
plied to load-balancing of such systems – a technique that is already embedded in
many systems.

Family PerformanceClientServerFam extends ClientServerFam with {
 Component Type PAClientT extends ClientT with {
 Properties {
 Requests : sequence <any>;
 ResponseTime : float;
 ServiceTime : float;
 };
 };
 Connector Type PALinkT extends LinkT with {
 Properties {
 DelayTime : float;
 };
 };
 Component Type PAServerGroupT extends ServerGroupT with {
 Properties {
 Replication : int <<default : int = 1;>>;
 Requests : sequence <any>;
 ResponseTime : float;
 ServiceTime : float;
 AvgLoad : float;
 };
 Invariant AvgLoad > minLoad;
 };
 Role Type PAClientRoleT extends ClientRoleT with {
 Property averageLatency : float;
 Invariant averageLatency < maxLatency;
 };

 Property maxLatency : float;
 Property minLoad : float;
};

Fig. 4. Client/Server Style Extended for Analysis.

Increasing System Dependability through
Architecture-based Self-repair 15

5.1 Defining a Client-Server Architectural Style

Figure 4 contains a partial description of the style used to characterize the class of
web-based systems of our example. The style is actually defined in two steps. The
first step specifies a generic client-server style (called a family in Acme). It defines a
set of component types: a web client type (ClientT), a server group type (ServerGroupT),
and a server type (ServerT). It also defines a connector type (LinkT). Constraints on the
style (appearing in the definition of LinkT) guarantee that the link has only one role for
the server. Other constraints, not shown, further define structural rules (for example,
that each client must be connected to a server).

There are potentially many possible kinds of analysis that one might carry out on
client-server systems built in this style. Since we are particularly concerned with
overall system performance, we augment the client-server style to include perform-
ance-oriented properties. These include the response time and degree of replication
for servers and the delay time over links. This style extension is shown in Figure 5.
Constraints on this style capture the desired performance related behavior of the sys-
tem. The first constraint, associated with PAServerGroupT, specifies that a server group
should not be under-utilized. The second constraint, as part of the PAClientRoleT, speci-
fies that the latency on this role should not be above some specified maximum.

Having defined an appropriate style, we can now define a particular system con-

figuration in that style, such as the one illustrated in Figure 6.

Family ClientServerFam = {
 Component Type ClientT = {…};
 Component Type ServerT = {…};

 Component Type ServerGroupT = {…};

 Role Type ClientRoleT = {…};
 Role Type ServerRoleT = {…};

 Connector Type LinkT = {
 invariant size(select r : role in Self.Roles |
 declaresType(r, ServerRoleT)) == 1;
 invariant size(select r : role in Self.Roles |
 declaresType(r, ClientRoleT)) >= 1;
 Role ClientRole1 : ClientRoleT;
 Role ServerRole : ServerRoleT;
 };
};

 Fig. 5. Client/Server Style Definition.

16 David Garlan, Shang-Wen Cheng, Bradley Schmerl

5.2 Using M/M/m Performance Analysis to Set Initial Conditions

The use of buffered request queues, together with replicated servers, suggests using
queuing theory to understand the performance characteristics of systems built in the
client-server style above. As we have shown elsewhere [35], for certain architectural
styles queuing theory is useful for determining various architectural properties includ-
ing system response time, server response time (Ts), average length of request queues
(Qs), expected degree of server utilization (us), and location of bottlenecks.

In the case of our example style, we have an ideal candidate for M/M/m analysis.
The M/M indicates that the probability of a request arriving at component s, and the
probability of component s finishing a request it is currently servicing, are assumed to
be exponential distributions (also called “memoryless,” independent of past events);
requests are further assumed to be, at any point in time, either waiting in one compo-
nent’s queue, receiving service from one component, or traveling on one connector.
The m indicates the replication of component s; that is, component s is not limited to
representing a single server, but rather can represent a server group of m servers that
are fed from a single queue. Given estimates for clients’ request generation rates and
servers’ service times (the time that it takes to service one request), we can derive
performance estimates for components according to Table 1. To calculate the ex-
pected system response time for a request, we must also estimate the average delay Dc
imposed by each connector c, and calculate, for each component s and connector c,
the average number of times (Vs, Vc) it is visited by that request. (Given Vs and the
rates at which client components generate requests, we can derive rather than estimate
Rs, the rate at which requests arrive at server group s.)

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Fig. 6. Architectural Model of Example System.

ServerGrp2 ServerGrp3

Increasing System Dependability through
Architecture-based Self-repair 17

Applying this M/M/m theory to our style tells us that with respect to the average
latency for servicing client requests, the key design parameters in our style are (a) the
replication factor m of servers within a server group, (b) the communication delay D
between clients and servers, (c) the arrival rate R of client requests and (d) the service
time S of servers within a server group.

In previous work [35] we showed how to use this analysis to provide an initial con-
figuration of the system based on estimates of these four parameters. In particular,
Equation (5) in Table 1 indicates for each server group a design tradeoff between
utilization (underutilized servers may waste resources, but provide faster service) and
response time. Utilization is in turn affected by service time and replication. Thus,
given a range of acceptable utilization and response time, if we choose service time
then replication is constrained to some range (or vice versa). As we will show in the
next section, we can also use this observation to determine sound run time adaptation
policies.

We can use the performance analysis to decide the following questions about our
architecture, assuming that the requirements for the initial system configuration are
that for six clients each client must receive a latency not exceeding 2 seconds for each
request and a server group must have a utilization of between 70% and 80%:

(1) Utilization
of server group s m

SR
u ss

s =

(2) Probability
{no servers busy} () ()

()

1

00 1!!

−

= 











−
+= ∑

s

m
ssm

i

i
s

um

muu

i

mu
p

(3) Probability
{all servers busy}

()
()s

m
s

Q um

mup
P

−
=

1!
0

(4) Average queue length of s

s

sQ
s u

uP
Q

−
=

1

(5) Average response time of s

()
()

() () ()() 1

0

2 1
!

1!

1

+

=
−+−

+

=
−

+=

∑ m
ss

m

n

n
s

s

m
ss

s

ss

sQ
ss

muu
n

mu
umm

muS
S

uR

uP
ST

(6) System response time (la-
tency) ∑∑ + ccss VDVT

Table 1. Performance Equations from [4]

18 David Garlan, Shang-Wen Cheng, Bradley Schmerl

• How many replicated servers must exist in a server group so that the server group
is properly utilized?

• Where should the server group be placed so that the bandwidth (modeled as the
delay in a connector) leads to latency not exceeding 2 seconds?
Given a particular service time and arrival rate, performance analysis of this model

gives a range of possible values for server utilization, replication, latencies, and sys-
tem response time. We can use Equation (5) to give us an initial replication count and
Equation (6) to give us a lower bound on the bandwidth. If we assume that the arrival
rate is 180 requests/sec, the server response time is between 10ms and 20ms the aver-
age request size is 0.5KB, and the average response size is 20KB, then the perform-
ance analysis gives us the following bounds:

Initial server replication count= 3-5
Zero-delay System Response Time = 0.013-0.026 seconds

Therefore,
0 < Round-trip connector delay < 1.972 seconds, or
0 < Average connector delay < .986 seconds

Thus, the average bandwidth over the connector must be greater than 10.4KB/sec.
This analysis provides several key criteria for monitoring the running system. First, if
latency increases undesirably, then we should check to ensure that the bandwidth
assumption still holds between a client and its server. Second, if bandwidth is not the
causing factor, then we should examine the load on the server.

5.3 Defining Adaptation Operators

The client-server architectural style suggests a set of style-specific adaptation opera-
tors that change the architectural while ensuring the style constraints. These operators
are:
• addServer(): This operation is applied to a component of type ServerGroupT and

adds a new component of type ServerT to its representation, ensuring that there is a
binding between its port and the ServerGroup’s port.

• move(to:ServerGroupT): This operation is applied to a client and first deletes the
role currently connecting the client to the connector that connects it to a server
group. It then performs the necessary attachment to a LinkT connector that will con-
nect it to the server group passed in as a parameter. If no such connector exists, it
will create one and connect it to the server group.

• remove(): This operation is applied to a server and deletes the server from its con-
taining server group. Furthermore, it changes the replication count on the server
group and deletes the binding.
The above operations all effect changes to the model. The next operation queries

the state of the running system:
• findGoodSGroup(cl:ClientT,bw:float):ServerGroupT; finds the server group with

the best bandwidth (above bw) to the client cli, and returns a reference to the server
group.
These operators reflect the considerations just outlined. First, from the nature of a

server group, we get the operations of adding or removing a server from a group.
Also, from the nature of the asynchronous request connectors, we get the operations

Increasing System Dependability through
Architecture-based Self-repair 19

of adapting the communication path between particular clients and server groups.
Second, based on the knowledge of supported system change operations, outlined in
Section 4.4, we have some confidence that the architectural operations are actually
achievable in the executing system.

5.4 Defining Repair Strategies to Maintain Performance

Recall that the queuing theory analysis points to several possible causes for why la-
tency could increase. Given these possibilities, we can show how the repair strategy
developed from this theoretical analysis. The equations for calculating latency for a
service request (Table 1) indicate that there are four contributing factors: (1) the con-
nector delay, (2) the server replication count, (3) the average client request rate, and
(4) the average server service time. Of these we have control over the first two. When
the latency is high, we can decrease the connector delay (by moving clients to servers
that are closer) or increase the server replication count to decrease the latency. Deter-
mining which tactic depends on whether the connector has a low bandwidth (in-
versely proportional to connector delay) or if the server group is heavily loaded (in-
versely proportional to replication). These two system properties form the precondi-
tions to the tactics; we have thus developed a repair strategy with two tactics.

Applying the Approach
We specify repair strategies using a repair language that supports basic flow control,
Armani constraints, and simple transaction semantics. Each constraint in an architec-
tural model can be associated with a repair strategy, which in turn employs one or
more repair tactics.

Figure 7 (lines 1-3) illustrates the repair strategy associated with the latency
threshold constraint. In line 2, “! ” denotes “if constraint violated, then execute.”
The top-level repair strategy in lines 5-17, fixLatency, consists of two tactics. The first
tactic in lines 19-31 handles the situation in which a server group is overloaded, iden-
tified by the precondition in lines 24-26. Its main action in lines 27-29 is to create a
new server in any of the overloaded server groups. The second tactic in lines 33-48
handles the situation in which high latency is due to communication delay, identified
by the precondition in lines 34-36. It queries the running system to find a server group
that will yield a higher bandwidth connection in lines 40-41. In lines 42-44, if such a
group exists it moves the client-server connector to use the new group. The result of
an instance of this repair on Figure 6 is depicted in Figure 8. The repair strategy uses
a policy in which it executes these two tactics sequentially: if the first tactic succeeds
it commits the repair strategy; otherwise it executes the second. The strategy will
abort if neither tactic succeeds, or if the second tactic finds that it cannot proceed
since there are no suitable server groups to move the connection to.

20 David Garlan, Shang-Wen Cheng, Bradley Schmerl

01 invariant r.averageLatency <= maxLatency
02 !
03 fixLatency(r);
04
05 strategy fixLatency (badRole: ClientRoleT) = {
06 begin repair-transaction;
07 let badClient: ClienT =
08 select one cli: ClientT in self.Components |
09 exists p: RequestT in cli.Ports | attached(badRole, p);
10 if (fixServerLoad(badClient)) {
11 commit repair-transaction;
12 else if (fixBandwidth(badClient, badRole) {
13 commit repair-transaction;
14 } else {
15 abort(ModelError);
16 }
17 }
18
19 tactic fixServerLoad (client: ClientT) : boolean = {
20 let overloadedServerGroups: Set{ServerGroupT} =
21 { select sgrp: ServerGroupT in self.Components |
22 connected(sgrp, client) and
23 sgrp.AvgLoad > maxServerLoad };
24 if (size(overloadedServerGroups) == 0) {
25 return false;
26 }
27 foreach sGrp in overloadedServerGroups {
28 sGrp.addServer();
29 }
30 return (size(overloadedServerGroups) > 0);
31 }
32
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = {
34 if (role.Bandwidth >= minBandwidth) {
35 return false;
36 }
37 let oldSGrp: ServerGroupT =
38 select one sGrp: ServerGroupT in self.Components |
39 connected(client, sGrp);
40 let goodSGrp: ServerGroupT =
41 findGoodSGrp(client, minBandwidth);
42 if (goodSGrp != nil) {
43 client.moveClient(oldSGrp, goodSGrp);
44 return true;
45 } else {
46 abort(NoServerGroupFound);
47 }
48 }

Fig. 7. Repair Tactic for High Latency.

Increasing System Dependability through
Architecture-based Self-repair 21

5.5 Style-Based Monitoring

In our example above we are concerned with the average latency of client requests.
To monitor this property, we must associate a gauge with the averageLatency property
of each client role (see the definition of ClientRoleT in Figure 4). This latency gauge in
turn deploys a probe into the implementation that monitors the timing of reply-request
pairs. When it receives such monitored values it averages them over some window,
updating the latency property in the architecture model when it changes. The latency
gauge that we use is not specific to this style, or indeed to this implementation. The
gauges utilizes probes that use the Remos network monitoring service, which in turn
uses the SNMP to ascertain properties of the network.

But average latency is not the only architectural property that we need to monitor.
The repair tactics, derived from queuing theoretic model of performance analysis, rely
on information about two additional constraints: whether the bandwidth between the
client and the server is low or whether the server group is overloaded (or both). Thus,
to determine why latency is high in the architecture, we need to monitor these two
properties. The gauge for measuring bandwidth uses the same probe used by the la-
tency gauge for measuring the time it takes to receive a reply. An additional probe
measures the size of the reply and calculates the bandwidth based on these values.
Determining the load on the server can be done in a number of ways. We measure the
size of a request queue to indicate whether the server group is overloaded.

Client

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Component ServerGrp2
(ServerGrpRep)

Server1 Server2

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Component ServerGrp2
(ServerGrpRep)

Server1 Server2

Fig. 8. Model of System After Low Bandwidth Repair.

ServerGrp1 ServerGrp2

22 David Garlan, Shang-Wen Cheng, Bradley Schmerl

5.6 Mapping Architectural Operators to Implementation Operators

To illustrate, the specific operators and queries supported by the Runtime Manager in
our example are listed in Table 2. These operators include low-level routines for cre-
ating new request queues, activating and deactivating servers, and moving client
communications to a new queue.

The Translator for our example maps the Style API Interpreter operations described in
Section 4.3.1 to the Runtime Manager operations using the scheme summarized in Ta-
ble 2. (Parameters passed between the levels also need to be translated. We do not
discuss this here.) The actual map involves mapping model-level parameters to im-
plementation level parameters, and mapping return values to model values.

5.7 Putting the Pieces Together

As an example of how the adaptation framework fits together in our implementation,
we will consider one cycle of the repair, starting with a latency probe reporting a
value, and ending with a client moving to a new server group. This cycle indicates
how the architecture in Figure 6 is transformed into the architecture in Figure 8.
1. The bandwidth probe on the link between Client4 and ServerGroup1 reports a band-

width of 18KB/sec to the probe bus.
2. The latency gauge attached to Client4’s role combines this value with the average

size of requests that it has seen, and calculates an average latency of 2.5secs, which
it reports to the gauge bus. Similarly, the bandwidth gauge attached to Client4’s
role reports a bandwidth of 18KB/sec to the gauge bus.

3. The Architecture Manager, implemented as a gauge consumer, receives these val-
ues and adjusts the averageLatency and bandwidth properties of Client4’s role.

4. The Analyzer, implemented using our Armani constraint analyzer, reevaluates
constraints. The constraint averageLatency < maxLatency in Client4’s role fails.

5. Tailor, the repair handler, is invoked and pauses monitoring before starting to exe-
cute the repair strategy in Figure 7, passing Client4’s role as a parameter.

6. The repair strategy first attempts to fix the server load, but returns false because no

Table 2. Mapping Between Architecture and Implementation Operations

Model Level Environment Level

addServer
findServer

activateServer
connectServer

moveClient
createReqQue
moveClient

findGoodSGrp
Conditionals + multiple

calls to
remos_get_flow

Increasing System Dependability through
Architecture-based Self-repair 23

servers are overloaded.
7. The repair strategy attempts to fix the bandwidth. It examines the bandwidth prop-

erty of the role, and determines that it is larger than 10.4KB/sec (line 34). It then
calls the architectural operator findGoodSGrp to find the server group with the best
bandwidth. This invokes queries to remos_get_flow.

8. The operator findGoodSGrp returns ServerGroup2 now has the best bandwidth and
initiates the moveClient operator (line 43). This in turn invokes the change interface
for the application to effect the move.

6. Implementation Status

In terms of the adaptation framework in Figure 1, our implementation contains the
following pieces:

Monitoring Mechanisms: Our approach is general enough to be used with exist-
ing technologies for monitoring systems and their environments. To connect with the
infrastructure described in Section 4.4.1, a wrapper needs to be written for these tech-
nologies that allows events to be generated according to the probe infrastructure,
mentioned in Figure 8, turning the technology into a probe. We have developed proto-
type probes for gathering information out of networks, based on the Remos system
[21]. We have developed general-purpose gauges that can be used to report data about
expected and observed bandwidth and latencies based on data from this system.

Other technology has also been successfully integrated into our infrastructure, most
notably the ProbeMeister system for unobtrusively monitoring Java classes [39], and
the Event Packager and Event Distiller systems for monitoring temporal events from
executing systems [17]. In addition, we have produced gauges that monitor the adher-
ence of elements of the architecture to protocols expressed in FSP [23].

Architectural Models: AcmeStudio, a design environment that allows architec-
tures to be described in Acme, has been modified so that it provides run time observa-
tion of a software architecture [34]. A general library has been developed that can be
integrated with other architectural tools to associate gauge information with architec-
tural models.

Architectural Analysis: We have modified our tool for evaluating Armani con-
straints at design times so that it evaluates constraints dynamically at run time.

Repair Handler: The Armani constraint evaluator has been augmented so that it
supports the specification and execution of repairs.

Translator and Runtime Manager: Currently, we have hand-tailored support for
these components that need to be changed for each implementation. Our work in this
area will concentrate on providing more general mechanisms where appropriate, and
perhaps using off-the-shelf reconfiguration commands for commercial systems. In
fact, we are actively investigating how to utilize the Workflakes system for a more
general solution to the problem of mapping between architecture and implementation.

24 David Garlan, Shang-Wen Cheng, Bradley Schmerl

7. Experience

Thus far we have experimented with architectural adaptation for two kinds of sys-
tem properties: (1) performance for web-based systems, illustrated earlier, and (2)
protocol conformance.

To evaluate the effectiveness of our adaptation framework for performance-
oriented adaptation, we conducted an experiment to test system adaptation using a
dedicated, experimental testbed consisting of five routers and eleven machines com-
municating over 10 Mbps lines. The implementation that we used for our experiment
was based on the example presented in this paper – that of a client-server system
using replicated server groups communicating over a distributed system. System loads
were fabricated in three segments over 30 minutes so that we could observe the self-
repair behavior of the system.

The results showed that for this application and the specific loads used in the ex-
periment, self-repair significantly improved system performance. Figures 9 and 10
show sample results for the system performance without adaptation, and with, respec-
tively. (See [7] for details.) However, it also revealed, perhaps not unexpectedly, that
externalized repair introduces some significant latency. In our system it took several
seconds for the system to notice a performance problem and several more seconds to
fix it. Although we can imagine speeding up the roundtrip repair time, this does indi-
cate that the approach is best suited for repair that operates on a global scale, and that
handles longer term trends in system behavior.

0.1

1

10

100

1000

0 600 1200 1800

Time elapsed (s)

L
at

en
cy

 (s
)

Fig. 9. Average Latency for Control (No Repair).

Increasing System Dependability through
Architecture-based Self-repair 25

The second application of the approach has been to monitor and check protocols of
interaction between components. Connectors are associated with protocol constraints
that indicate the allowed order of communication events. These are defined in a proc-
ess algebra, FSP [23], and then used by “protocol gauges” at run time to detect when
communicating components fail to respect the specified protocols. For example, a
protocol error might occur when a component attempts to write data to a pipe after it
has closed that pipe, or if a client attempts to communicate with a server without first
initializing its session.

8. Discussion

We have described an approach in which architecture-based self-adaptation is sup-
ported by the incorporation of styles as an explicit design choice in the adaptation
framework. The flexibility inherent in this approach permits the system maintainer to
pick a style that matches well to existing implementation bases, provides a formal
basis for specifying constraints, and can permit the definition of repair policies that
are justified by analytic methods.

However, this flexibility also introduces several new complexities over other ap-
proaches in which the choice of architectural style is hardwired into the framework. In
particular, at least three critical questions are raised: First, is it always possible to map
architectural repairs into corresponding system changes? Second, is it always possible
to monitor relevant run time information? Third, is it reasonable to expect that ana-
lytical techniques can address a sufficiently broad set of concerns to inform our repair
strategies? We address each issue in turn.

Model-Implementation Map: In our approach the ability to map architectural
changes to corresponding implementation reconfigurations is moderated by two fac-
tors. First is an assumption that systems provide a well-defined set of operations for
modifying a running system. Of course, in general this may not be true. Some systems

Fig. 10. Average Latency under Repair.

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

L
at

en
cy

 (s
)

26 David Garlan, Shang-Wen Cheng, Bradley Schmerl

are inherently not reconfigurable, in which case our approach would simply not work.
However, many systems do in fact embody changing operations – such as the ability
to load dynamic libraries and remote code, to redirect communications to alternative
pathways, or to do dynamic resource management. Moreover, we would argue that
such capabilities are going to be increasingly prevalent in modern systems that are
intended to function in a connected, service-based universe. For example, modern
frameworks like Jini provide as a fundamental building block the notion of allocation
and deallocation of resources, and location-independence of services.

The other moderating factor is an assumption that architectural style is not chosen
arbitrarily. Obviously, attempting to pair an arbitrary style with an arbitrary imple-
mentation could lead to considerable difficulty in relating the two. However, one of
the hallmarks of our approach is that it encourages one to match an appropriate style
to an implementation base. Hence, in fact, the flexibility of choosing a style can actu-
ally help reduce the gap between system implementations and architectural models.

Implementation-Model Map: For our approach to work it must be possible to re-
flect dynamic system state into an architectural model. To do this we provide a multi-
leveled framework that separates concerns of low-level system instrumentation from
concerns of abstracting those results in architecturally meaningful terms. What makes
us think that either part will be feasible in the general case?

The ability to monitor systems is itself an active research area. Increasingly sys-
tems are expected to provide information that can be used to determine their health.
Moreover, there is an increasingly large number of non-intrusive post-deployment
monitoring schemes. For example, to deal with network performance we were able to
use a monitoring infrastructure developed completely independently. It in turn relies
on the standard protocol SNMP. Other researchers and practitioners are developing
many other schemes such as the ability to place monitors between COM components,
the ability to monitor network traffic to determine security breaches, the ability to
monitor object method calls, and various probes that determine whether a given com-
ponent is alive.

In terms of mapping low-level information to architectural information, the capa-
bility will certainly depend on the distance between the architectural and implementa-
tion styles. As we argued earlier, our approach encourages developers to pick styles
where that mapping will be straightforward.

Analytical Methods: A key feature of our approach is the notion that repair strate-
gies should leverage architectural analyses. We demonstrated one such analysis for
performance. What makes us think that others exist? In fact, there is considerable
work recently on finding good architecture-based analyses. For example, Klein et al.
[19] provide a method of reasoning about the behavior of component types that inter-
act in a defined pattern. In earlier work we showed how to adapt protocol analysis to
architectural modification [3]. Others have shown how real-time schedulability can be
applied [38]. Although far from providing a complete repertoire of analytical tech-
niques, the space is rich, and getting richer.

Increasing System Dependability through
Architecture-based Self-repair 27

9. Conclusion and Future Work

In this paper we have presented a technique for using software architectural styles to
automate dynamic repair of systems. In particular, styles and their associated analyses
• make explicit the constraints that must be maintained in the face of evolution
• direct us to the set of properties that must be monitored to achieve system quality

attributes and maintain constraints
• define a set of abstract architectural operators for repairing a system
• allow us to select appropriate repair strategies, based on analytical methods
We illustrated how the technique can be applied to performance-oriented adaptation
of certain web-based systems.

For future research we see opportunities to improve each of the areas mentioned in
Section 7. We need to be able to develop mechanisms that provide richer adaptability
for executing systems. We need new monitoring capabilities, and reusable infrastruc-
ture for relating monitored values to architectures. We need new analytical methods
for architecture that will permit the specification of principled adaptation policies.

Additionally we see a number of other key future research areas. First is the inves-
tigation of more intelligent repair policy mechanisms. For example, one might like a
system to dynamically adjust its repair tactic selection policy so that it takes into
consideration the history of tactic effectiveness: effective tactics would be favored
over those that sometimes fail to produce system improvements. Second is the link
between architectures and requirements. Systems may need to adapt, not just because
the underlying computation base changes, but because user needs change. This will
require ways to link user expectations to architectural parameters and constraints.
Third is the development of concrete instances of our approach for some of the com-
mon architectural frameworks, such as EJB, Jini, and CORBA.

Acknowledgements
The research described in this paper was supported by DARPA, under Grants
N66001-99-2-8918 and F30602-00-2-0616. Views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of DARPA.

References
[1] Agha, G. A. Adaptive Middleware. Communications of the ACM 45(6):30-32, Jun. 2002.
[2] Allen, R.J. A Formal Approach to Software Architecture. PhD Thesis, published as

Carnegie Mellon University School of Computer Science Technical Report CMU-CS-97-
144, May 1997.

[3] Allen, R.J., Douence, R., and Garlan, D. Specifying Dynamism in Software Architectures.
Proc. the Workshop on Foundations of Component-Based Software Engineering, Sept.
1997.

[4] Allen, R.J and Garlan, D. A Formal Basis for Architectural Connection. ACM
Transactions of Software Engineering and Methodology, Jul. 1997.

28 David Garlan, Shang-Wen Cheng, Bradley Schmerl

[5] Bertsekas, D. and Gallager, R. Data Networks, Second Edition. Prentice Hall, 1992. ISBN
0-13-200916-1.

[6] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L. Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service. Proc. the Nineteenth ACM
Symposium on Principles of Distributed Computing (PODC2000), Portland OR, Jul. 2000.

[7] Cheng, S-W., Garlan D., Schmerl, B.R., Steenkiste, P.R., Hu. N. Software Architecture-
based Adaptation for Grid Computing. Proc. the 11th IEEE Conference on High
Performance Distributed Computing (HPDC’02), Edinburgh, Scotland, Jul. 2002.

[8] Dashofy, E., Garlan, D., van der Hoek, A., and Schmerl, B.
http://www.ics.uci.edu/pub/arch/xarch/.

[9] Dashofy, E., van der Hoek, A., and Taylor, R.N. A Highly-Extensible, XML-Based
Architecture Description Language. Proc. the Working IEEE/IFIP Conference on Software
Architecture, Amsterdam, The Netherlands, Aug. 2001.

[10] Gantenbien, R.E. Dynamic Binding in Strongly Typed Programming Languages. Journal
of Systems and Software 14(1):31-38, 1991.

[11] Garlan, D., Allen, R.J., and Ockerbloom, J. Exploiting Style in Architectural Design. Proc.
the SIGSOFT '94 Symposium on the Foundations of Software Engineerng, , New Orleans,
LA, Dec. 1994.

[12] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural Description of Component-
Based Systems. Foundations of Component-Based Systems. Leavens, G.T., and
Sitaraman, M. (eds). Cambridge University Press, 2000 pp. 47-68.

[13] Garlan, D., Schmerl, B.R., and Chang, J. Using Gauges for Architecture-Based
Monitoring and Adaptation. Proc. the 1st Working Conference on Complex and Dynamic
System Architecture. Brisbane, Australia, Dec. 2001.

[14] Gorlick, M.M., and Razouk, R.R. Using Weaves for Software Construction and Analysis.
Proc. the 13th International Conference on Software Engineering, IEEE Computer Society
Press, May 1991.

[15] Gorlick, M.M. Distributed Debugging on $5 a day. Proc. the California Software
Symposium, University of California, Irvine, CA, 1997 pp. 31-39.

[16] Gosling, J. and McGilton, H. The Java Language Environment: A White Paper. Sun
Microsystems Computer Company, Mountain View, California, May 1996. Available at
http://java.sun.com/docs/white/langenv/.

[17] Gross, P.N, Gupta, S., Kaiser, G.E., Kc, G.S., and Parekh, J.J. An Active Events Model for
Systems Monitoring. Proc. the 1st Working Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, Dec. 2001.

[18] Ho, W.W. and Olsson, R.A. An Approach to Genuine Dynamic Linking. Software –
Practice and Experience 21(4):375—390, 1991.

[19] Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M., Lipson, H. Attribute-Based
Architecture Styles. Software Architecture Proc. the First Working IFIP Conference on
Software Architecture (WICSA1), (San Antonio, TX), Feb. 1999, 225-243.

[20] Kon, F., Romn, M., Liu, P., Mao, J., Yamane, T., Magalh, C.,Campbell, R.H. Monitoring,
security, and dynamic configuration with the dynamicTAO reflective ORB. IFIP/ACM
International Conference on Distributed Systems Platforms, 2000, New York, New York.

[21] Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steenkiste, P., and Subhlok, J. A
Resource Query Interface for Networ-aware Applications. Cluster Computing, 2:139-151,
Baltzer, 1999.

[22] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specifying Distributed Software
Architectures. Proc. the 5th European Software Engineering Conference (ESEC '95),
Sitges, Sept. 1995. Also published as Lecture Notes in Computer Science 989, (Springer-
Verlag), 1995, pp. 137-153.

[23] Magee, J., and Kramer, J. Concurrency: State Models and Java Programs. Wiley, 1999.

Increasing System Dependability through
Architecture-based Self-repair 29

[24] Métayer, D.L. Describing Software Archtiecture Styles using Graph Grammars. IEEE
Transactions on Software Engineering, 24(7):521-553, Jul. 1998.

[25] Miller, N., and Steenkiste, P. Collecting Network Status Information for Network-Aware
Applications. IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

[26] Monroe, R.T. Capturing Software Architecture Design Expertise with Armani. Carnegie
Mellon University School of Computer Science Technical Report CMU-CS-98-163.

[27] Moriconi, M. and Reimenschneider, R.A. Introduction to SADL 1.0: A Language for
Specifying Software Architecture Hierarchies. Technical Report SRI-CSL-97-01, SRI
International, Mar. 1997.

[28] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S., and Kirby, G.N.C. Exploiting
Persistent Linkage in Software Engineering Environments. The Computer Journal
38(1):1—16, 1995.

[29] Object Management Group. The OMG Unified Modeling Language Specification, Version
1.4. Sep. 2001. Available at http://www.omg.org/technology/documents/formal/uml.htm.

[30] The OpenGroup. Architecture Description Markup Language (ADML) Version 1. Apr.
2000. Available at http://www.opengroup.org/publications/catalog/i901.htm.

[31] Oriezy, P., Medvidovic, N., and Taylor, R.N. Architecture-Based Runtime Software
Evolution. Proc. the International Conference on Software Engineering 1998 (ICSE'98).
Kyoto, Japan, Apr. 1998, pp. 11—15.

[32] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G., Medvidovic, N., Quilici, A.,
Rosenblum, D., and Wolf, A. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems 14(3):54-62, May/Jun. 1999.

[33] Shaw, M. and Garlan, D. Software Architectures: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[34] Schmerl, B.R., and Garlan, D. Exploiting Architectural Design Knowledge to Support
Self-repairing Systems. Proc, the 14th International Conference on Software Engineering
and Knowledge Engineering, Ischia, Italy, Jul. 15-19, 2002.

[35] Spitznagel, B. and Garlan, D. Architecture-Based Performance Analysis. Proc. the 1998
Conference on Software Engineering and Knowledge Engineering, Jun. 1998.

[36] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Robbins, J.E., Nies,
K.A., Oreizy, P., and Dubrow, D.L. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Transactions on Software Engineering 22(6):390-406,
1996.

[37] Valetto, G., and Kaiser, G. A Case Study in Software Adaptation. Proc. the 1st ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS’02), Charleston, SC, Nov. 2002.

[38] Vestel, S. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell
Technology Center, Apr. 1996.

[39] Wells, D., and Pazandak, P. Taming Cyber Incognito: Surveying Dynamic /
Reconfigurable Software Landscapes. Proc. the 1st Working Conference on Complex and
Dynamic Systems Architectures,, Brisbane, Australia, Dec 12-14, 2001.

[40] Wermelinger, M., Lopes, A., and Fiadeiro, J.L. A Graph Based Architectural
(Re)configuration Language. Proc. the Joint 8th European Software Engineering
Conference and the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering. Vienna, Austria, Sep. 2001, pp. 21—32.

[41] Wile, D.S. AML: An Architecture Meta-Language. Proc. the Automated Software
Engineering Conference, Cocoa Beach, FL, Oct. 1999.

