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Abstract. One increasingly important technique for improving system depend-
ability is to provide mechanisms for a system to adapt at run time in order to 
accommodate varying resources, system errors, and changing requirements. For 
such "self-repairing" systems one of the hard problems is determining when a 
change is needed, and knowing what kind of adaptation is required. In this pa-
per we describe a partial solution in which stylized architectural design models 
are maintained at run time as a vehicle for automatically monitoring system be-
havior, for detecting when that behavior falls outside of acceptable ranges, and 
for deciding on a high-level repair strategy. The main innovative feature of the 
approach is the ability to specialize a generic run time adaptation framework to 
support particular architectural styles and properties of interest. Specifically, a 
formal description of an architectural style defines for a family of related sys-
tems the conditions under which adaptation should be considered, provides an 
analytic basis for detecting anomalies, and serves as a basis for developing 
sound repair strategies. 

1. Introduction 

One increasingly important technique for improving software-based system integrity 
is providing systems with the ability to adapt themselves at run time to handle such 
things as resource variability, changing user needs, and system faults. In the past, 
systems that supported such self-adaptation were rare, confined mostly to domains 
like telecommunications switches or deep space control software, where taking a 
system down for upgrades was not an option, and where human intervention was not 
always feasible. However, today more and more systems have this requirement, in-
cluding e-commerce systems and mobile embedded systems. Such systems must 
continue to run with only minimal human oversight, and cope with variable resources 
(bandwidth, server availability, etc.), system faults (servers and networks going down, 
failure of external components, etc.), and changing user priorities (high-fidelity video 
streams at one moment, low fidelity at another, etc.). 

Traditionally system self-repair has been handled within the application, and at the 
code level. For example, applications typically use generic mechanisms such as ex-
ception handling or timeouts to trigger application-specific responses to an observed 
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fault or system anomaly. Such mechanisms have the attraction that they can trap an 
error at the moment of detection, and are well-supported by modern programming 
languages (e.g., Java exceptions) and run time libraries (e.g., timeouts for RPC). 
However, they suffer from the problem that it can be difficult to determine what the 
true source of the problem is, and hence what kind of remedial action is required. 
Moreover, while they can trap errors, they are not well-suited to recognizing “softer” 
system anomalies, such as gradual degradation of performance over some communi-
cation path, or transient failures of a server. 

Recently a number of researchers have proposed an alternative approach in which 
system models – and in particular, architectural models – are maintained at run time 
and used as a basis for system reconfiguration and repair [32]. Architecture-based 
adaptation has a number of nice properties: As an abstract model, an architecture can 
provide a global perspective on the system, enabling high-level interpretation of sys-
tem problems. This in turn allows one to better identify the source of some problem. 
Moreover, architectural models can make “integrity” constraints explicit, helping to 
ensure the validity of any system change.  

A key issue in making this approach work is the choice of architectural style used 
to represent a system.1 Previous work in this area has focused on the use of specific 
styles (together with their associated description languages and toolsets) to provide 
intrinsically modifiable architectures.  Taylor et al. use hierarchical publish-subscribe 
via C2 [31, 36]; Gorlick et al. use a dataflow style via Weaves [14]; and Magee et al. 
use bi-directional communication links via Darwin [22]. 

The specialization to particular styles has the benefit of providing strong support 
for adapting systems built in those styles. However, it has the disadvantage that a 
particular style may not be appropriate for an existing implementation base, or it may 
not expose the kinds of properties that are relevant to adaptation. For example, differ-
ent styles may be appropriate depending on whether one is using existing client-server 
middleware, Enterprise JavaBeans (EJB), or some other implementation base. More-
over, different styles may be useful depending on whether adaptation should be based 
on issues of performance, reliability, or security. 

In this paper we show how to generalize architecture-based adaptation by making 
the choice of architectural style an explicit design parameter in the framework. This 
added flexibility allows system designers to pick an appropriate architectural style in 
order to expose properties of interest, provide analytic leverage, and map cleanly to 
existing implementations and middleware. 

The key technical idea is to make architectural style a first class run time entity. As 
we will show, formalized architectural styles augmented with certain run time mecha-
nisms provide a number of important capabilities for run time adaptation: (1) they 
define a set of formal constraints that allow one to detect system anomalies; (2) they 
are often associated with analytical methods that suggest appropriate repair strategies; 
(3) the allow one to link stylistic constraints with repair rules whose soundness is 
based on corresponding (style-specific) analytical methods; (4) they provide a set of 
operators for making high-level changes to the architecture; (5) they prescribe what 
aspects of a system need to be monitored. 

                                                           
1 By “architectural style” we mean a vocabulary of component types and their interconnections, 

together with constraints on how that vocabulary is used. 
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In the remainder of this paper we detail the approach, focusing primarily on the 
role of architectural styles to interpret system behavior, identify problems, and sug-
gest remediation. To illustrate the ideas we describe how the techniques have been 
applied to self-repair of an important class of web-based client-server systems, based 
on monitoring of performance-related behavior. As we will show, the selection of an 
appropriate architectural style for this domain permits the application of queuing-
theoretic analysis to motivate and justify a set of repair strategies triggered by detec-
tion of architectural constraint violations. 

2. Related Work 

Considerable research has been done in the area of dynamic adaptation at an imple-
mentation level. There are a multitude of programming languages and libraries that 
provide dynamic linking and binding mechanisms, as well as exception handling 
capabilities (e.g., [8, 16, 18, 27]). Systems of this kind allow system self-repair to be 
programmed on a per-system basis, but do not provide external, reusable mechanisms 
that can be added to systems in a disciplined manner per se, as with an architecture-
driven approach. 

Our work is also related to distributed debugging systems, insofar as remotely 
monitoring a running system to locate problems [15]. However, those systems have 
focused on user-mediated monitoring, whereas our research is primarily concerned 
with automated monitoring and reconfiguration. Adaptive or reflective middleware 
attempts to provide some automated support for adaptation of distributed applications, 
through shared infrastructure for component integration. An adaptive middleware 
supports inspection and modification of its internal state, and enables high-level ab-
straction for greater ease in controlling the lower-level services provided by the mid-
dleware [1, 20]. This work is similar to ours in that the middleware maintains an ex-
plicit representation of its internal structure and uses that model to adjust its proper-
ties. While adaptive middleware technology gives an application greater flexibility to 
adapt to changing requirements and environments, it is focused at adapting shared 
infrastructure. Our work in contrast also allows adaptation of the applications running 
on top of such infrastructure. 

The most closely related research is the work on architecture-based adaptation, 
mentioned earlier. As we noted, the primary difference between our work and earlier 
research in this area is the decoupling of style from the adaptive system infrastructure 
so that developers have the flexibility to pair an appropriate style to a system based on 
its implementation and the system attributes that should drive adaptation. To accom-
plish this we have to introduce some new mechanisms to allow “run time” styles to be 
treated as a design parameter in the run time adaptation infrastructure. Specifically, 
we must show how styles can be used to detect problems and trigger repairs. We must 
also provide mechanisms that bridge the gap between an architectural model and an 
implementation – both for monitoring and for effecting system changes. In contrast, 
for systems in which specific styles are built-in (as with [14, 35]) this is less of an 
issue because architectures are closely coupled to their implementations by construc-
tion. 
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Finally, there has been some work on formally characterizing architectural styles, 
and using them as a basis for system analysis [12, 35]. Our research extends this by 
showing how to turn “style as a design time artifact” into “style as a run time artifact”. 
As we will see, this change requires two significant additions to the usual notion of 
style as a set of types and constraints: (1) style-specific repair rules, and (2) style-
specific change operators. Some other efforts in this area have investigated formal 
foundations for dynamic architectures in terms of graph grammars and protocols, but 
have not attempted to use those formal descriptions as part of the run time adaptation 
infrastructure [3, 24, 40]. 

3. Overview of Approach 

Our starting point is an architecture-based approach to self-adaptation, similar to [32] 
(as illustrated in Figure 1): In a nutshell, an executing system (1) is monitored to 
observe its run time behavior; (2) Monitored values are abstracted and related to ar-
chitectural properties of an architectural model; (3) Changing properties of the archi-
tectural model trigger architectural analysis to determine whether the system is oper-
ating within an envelope of acceptable ranges; (4) Unacceptable operation causes 
repairs, which (5) adapt the architecture; (6) Architectural changes are propagated to 
the running system. 
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Fig. 1. Adaptation Framework 
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The key new feature in this framework is the use of style as a first class entity that 
allows one to tailor the framework to the application domain, and determines the 
actual behavior of each of the parts. Specifically, style is used to determine (a) what 
properties of the executing system should be monitored, (b) what constraints need to 
be evaluated, (c) what to do when constraints are violated, and (d) how to carry out 
repair in terms of high-level architectural operators. In addition we need to introduce 
a style-specific translation component to manage the transactional nature of repair and 
map high-level architecture operations into lower-level system operations. 

To illustrate how the approach works, consider a common class of web-based cli-
ent server applications that are based on an architecture in which web clients access 
web resources by making requests to one of several geographically distributed server 
groups (see Figure 2). Each server group consists of a set of replicated servers, and 
maintains a queue of requests, which are handled in FIFO order by the servers in the 
server group. Individual servers send their results directly to the requesting client. 

The organization that manages the overall web service infrastructure wants to 
make sure that two inter-related system qualities are maintained. First, to guarantee 
quality of service for the customer, the request-response latency for clients must be 
under a certain threshold (e.g., 2 seconds). Second, to keep costs down, the set of 
currently active servers should be kept as loaded as possible, subject to the first con-
straint. 

Since access loads in such a system will naturally change over time, the system has 
two built-in low-level adaptation mechanisms. First, we can activate a new server in a 
server group or deactivate an existing server. Second, we can cause a client to shift its 
communication path from one server group to another. 

The challenge is to engineer things so that the system adapts appropriately at run 
time. Using the framework described above, here is how we would accomplish this. 

Fig. 2. Deployment Architecture of Example System. 
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First, given the nature of the implementation, we decide to choose an architectural 
style based on client-server in which we have clients, server groups, and individual 
servers, together with the appropriate client-server connectors (see Figure 3). Next, 
because performance is the key quality attribute of concern, we adapt that style so that 
it captures performance-related properties and makes explicit constraints about ac-
ceptable performance (see Figure 4). Here, client-server latency and server load are 
the key properties, and the constraints are derived from the two desiderata listed 
above. Furthermore, because of the nature of communication we are able to pick a 
style for which formal performance analyses exist – in this case M/M/m-based queu-
ing theory. 

To make the style useful as a run time artifact we now augment the style with two 
specifications: (a) a set of style-specific architectural operators, and (b) a collection of 
repair strategies written in terms of these operators and associated with the style’s 
constraints. The operators and repair strategies are chosen based on an examination of 
the analytical equations, which formally identify how the architecture must change in 
order to affect certain parameters (like latency and load). 

There are now only two remaining problems. First, we must get information out of 
the running system. To do this we employ low-level monitoring mechanisms that 
instrument various aspects of the executing system. We can use existing off-the-shelf 
performance-oriented “system probes,” which we detail later. To bridge the gap be-
tween low-level monitored events and architectural properties we use a system of 
adapters, called “gauges,” which aggregate low-level monitored information and 
relate it to the architectural model. For example, we have to aggregate various meas-
urements of the round-trip time for a request and the amount of information trans-
ferred to produce bandwidth measurements at the architectural level.  

The second problem is to translate architectural repairs into actual system changes. 
To do this we write a simple table-driven translator that can interpret architectural 
repair operators in terms of the lower level system modifications that we listed earlier. 
In the running system the monitoring mechanisms update architectural properties, 
causing reevaluation of constraints. Violated constraints (high client-server latencies, 
or low server loads) trigger repairs, which are carried out on the architectural model, 
and translated into corresponding actions on the system itself (adding or removing 
servers, and changing communication channels). The existence of an analytic model 
for performance (M/M/m queuing theory) helps guarantee that the specific modifica-
tion operators for this style are sound. Moreover, the matching of the style to the 
existing system infrastructure helps guarantee that relevant information can be ex-
tracted, and that architectural changes can be propagated into the running system. 

4. Style-based Adaptation 

In this section, we discuss in more detail each aspect of the architectural adaptation 
framework. We begin with an introduction on software architecture and architectural 
styles, and proceed to discuss the changes to these ideas necessary to make them 
available and useful for dynamic adaptation. We then discuss the techniques for ob-
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serving and affecting the running system. In the next section, we give an example of 
the entire architectural style based on the example introduced in Section 3. 

4.1 Architectural Models and Styles 

The centerpiece of our approach is the use of stylized architectural models. Although 
there are many modeling languages and representation schemes for architecture, we 
adopt a simple approach in which an architectural model is represented as an anno-
tated, hierarchical graph.2 Nodes in the graph are components, which represent the 
principal computational elements and data stores of the system. Arcs are connectors, 
which represent the pathways of interaction between the components. Components 
and connectors have explicit interfaces (termed ports and roles, respectively). To 
support various levels of abstraction and encapsulation, we allow components and 
connectors to be defined by more detailed architectural descriptions, which we call 
representations. 

To account for semantic properties of the architecture we allow elements in the 
graph to be annotated with extensible property lists. Properties associated with a con-
nector might define its protocol of interaction, or performance attributes (e.g., delay, 
bandwidth). Properties associated with a component might define its core functional-
ity, performance attributes (e.g., average time to process a request, load, etc.), or its 
reliability. 

Representing an architecture as an arbitrary graph of generic components and con-
nectors has the advantage of being extremely general and open ended. However, in 
practice there are a number of benefits to constraining the design space for architec-
tures by associating a style with the architecture. An architectural style typically de-
fines a set of types for components, connectors, interfaces, and properties together 
with a set of rules that govern how elements of those types may be composed .   

Requiring a system to conform to a style has many benefits, including support for 
analysis, reuse, code generation, and system evolution [12, 35, 38]. Moreover, the 
notion of style often maps well to widely-used component integration infrastructures 
(such as EJB, HLA, CORBA), which prescribe the kinds of components allowed and 
the kinds of interactions that may take place between them. 

As a result, a number of Architecture Description Languages (ADLs) and their 
toolsets have been created to support system development and execution for specific 
styles. For example, C2 [36] supports a style based on hierarchical publish-subscribe; 
Wright [2, 3] supports a style based on formal specification of connector protocols; 
MetaH [38] supports a style based on real-time avionics control components.  

In our research we adopt the view that while choice of style is critical to supporting 
system design, execution, and evolution, different styles will be appropriate for dif-
ferent systems. For example, a client-server system, such as the one in our example, 
will most naturally be represented using a client-server style. In contrast, a signal 
processing system would probably adopt a dataflow-oriented pipe-filter style. While 
one might encode these systems in some other style, the mapping to the actual system 

                                                           
2 This is the core architectural representation scheme adopted by a number of ADLs, including 

Acme [12], xArch [8], xADL [9], ADML [30], and SADL [27]. 



8      David Garlan, Shang-Wen Cheng, Bradley Schmerl 

 

would become much more complex, with the attendant problems of ensuring that any 
observation derived from the architecture has a bearing on the system itself. 

For this reason, two key elements of our approach are the explicit definition of 
style and its accessibility at run time for system adaptation. Specifically, we define a 
style as a system of types, plus a set of rules and constraints.  The types are defined in 
Acme [12], a generic ADL that extends the above structural core framework with the 
notion of style. The rules and constraints are defined in Armani [26] a first-order 
predicate logic similar to UML’s OCL [29], augmented with a small set of architec-
tural functions. These functions make it easier to define logical expressions that refer 
to things like connectedness, type conformance, and hierarchical relationships.3 We 
say that a system conforms to a style if it satisfies all of the constraints defined by the 
style (including type conformance). 

An example of an architectural style is a pipe-filter style. Elements in this style in-
clude filter components, which receive data and transform that data, and pipe connec-
tors, which transfer data between filters. In Acme, the definition of a filter component 
type looks like: 

 
This type definition would be instantiated in a given systems by creating specific 

filter components. Any component conforming to the FilterT type would have at least 
the throughput property, and the two ports stdIn and stdOut, which in turn need to con-
form to the port types InputPortT and OutputPortT. 

Being able to define styles in Acme gives some reuse in our framework. We envi-
sion a suite of general styles (along with monitoring and repair capabilities) from 
which a style can be chosen to be plugged into our framework. An architect would 
then need to model the system according to this style, perhaps extending the style or 
utilizing other styles to model attributes of interest.4 

4.2 Analytical Methods for Architectures 

As we argued above, one of the main benefits of style-based architectural modeling is 
the ability to use analytical methods to evaluate properties of a system’s architectural 
design. For example, MetaH uses real-time schedulability analysis, and Wright uses 
protocol model checking. Use of the appropriate analytical methods helps us to focus 
on the aspects of the architecture that we need to model, to identify the constraints of 
the style, and to guide the error resolution when constraints are violated. For instance, 

                                                           
3 Details on Acme and Armani can be found elsewhere [12, 26]. Here we focus on how those 

representation schemes, originally developed as design-time notations, are extended and used 
to support run time adaptation. 

4 A style would also supply operators to modify the style, and perhaps repair facilities. These 
are discussed later in the section. 

Component type Filter T = { 
 Property throughput : float; 
 Port stdIn : InputPortT; 
 Port stdOut : OutputPortT; 
} 
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in a Service-Coalition style, cost analysis of the system indicates which services to 
monitor. Based on what factors drive cost—for example, performance—we can add to 
or refine cost-based constraints to take those factors into account. This can help guide 
us to the cause of error when a cost constraint fails. If performance were a factor, a 
cost violation in a particular component would suggest that we check the performance 
properties of that component for the cause. Furthermore, cost-benefit analysis would 
tell us how to trade-off cost with performance to find a better service during adapta-
tion. 

An analytical method can potentially be applied to several different styles. For ex-
ample, one might use queuing theoretic analysis in a Client-Server style or a Pipe-
Filter style, and cost-benefit analysis can be applied to almost any style. When applied 
to a particular style, however, the analytical method takes on the vocabulary of that 
style, and often augments elements of that style with analysis-specific properties. For 
example, queuing theoretic analysis augments a server component with properties 
such as load, service time, etc. 

4.3 Using Styles to Assist Adaptation 

The representation schemes for architectures and style outlined above were originally 
created to support design-time development tools. In this section we show how styles 
can be augmented to function as run time adaptation mechanisms. We then consider 
the supporting run time infrastructure needed to make this work out in practice (Sec-
tion 4.4). 

Two key augmentations to style definitions are needed to make them useful for run 
time adaptation: (1) the definition of a set of adaptation operators for the style, and (2) 
the definition of a set of repair strategies. 

4.3.1 Adaptation Operators 
The first extension is to augment a style description with a set of operators that define 
the ways one can change instances of systems in that style. Such operators determine 
a “virtual machine” that can be used at run time to adapt an architectural design. 

Given a particular architectural style, there will typically be a set of natural opera-
tors for changing an architectural configuration and querying for additional informa-
tion. In the most generic case, architectures can provide primitive operators for adding 
and removing components and connectors [31]. However, specific styles can often 
provide much higher-level operators that exploit the restrictions in that style and the 
intended implementation base. For example, a client-server style might support an 
operation to replicate a server to improve performance, whereas a pipe-filter style 
might support an operation to improve performance by adding a filer to compress the 
data on a pipe. 

Two key factors determine the choice of operators for a style. First is the style it-
self – the kinds of components, connectors and configuration rules. Based on its con-
straints, a style can both limit the set of operations, and also suggest a set of higher-
level operators. For example, if a style specifies that there must be exactly one in-
stance of a particular type of component, such as a database, the style should not 
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provide operations to add or remove an existing instance of this type. On the other 
hand, if another constraint says that every client component in the system must be 
attached to the (unique) database, it would make sense that a “new-client” operation 
would automatically create a new client-database connector and attach it between the 
new component and the database. These style-specific operators are defined in terms 
of style-neutral operators such as “add a component” or “remove a connector.” The 
definition of these style-neutral operations can be based on [40] or [41].   

The second factor is the feasibility of carrying out the change. To evaluate feasibil-
ity requires some knowledge of the target implementation infrastructure. It makes no 
sense to prescribe an architectural operator that has no hope of ever being carried out 
on the running system. For some styles, the relation is defined by construction (since 
implementations are generated from architectures). More generally, however, the 
style designer may have to make certain assumptions about the availability of imple-
mentation-changing operators that will be provided by the run time environment of 
the system. (We return to this issue in Section 7.) 

It is important to note that, while it is necessary to write adaptation operators for 
each style, we anticipate that this will only need to be done once for each style. A 
style should provide all operations that make sense in changing the style, regardless of 
any particular adaptation that might occur. For example, for a Client-Server style, the 
moveClient operator will be the same regardless of the adaptation being performed. 

While adaptation operators are specific to styles we can, however, describe some, 
commonly occurring operators. In general, every style would be expected to have 
some form of add and remove, as well as possibly activate and deactivate operators 
for component instances (e.g., addClient, removeFilter, activateServer, deactivateDB). A style 
would also be expected to have add/remove or connect/disconnect operators to setup 
connectors between components (e.g., addRPC, removeVideoStream, connectPipe, discon-
nectSQL). In addition, there will typically be operators to create, delete, and modify 
element properties (e.g., createLatencyProperty, deleteFrameRateProperty, modifyCompression-
Property). Finally, depending on the style, there might conceivably be operators for 
changing a component’s behavior via modification of specific properties of the com-
ponent, such as changing the internal behavioral protocol of a component. 

4.3.2 Repair Strategies 
The second extension to the traditional notion of architectural style is the specification 
of repair strategies that correspond to selected constraints of the style. The key idea is 
that when a stylistic constraint violation is detected, the appropriate repair strategy 
will be triggered. 

Describing Repair Strategies 
A repair strategy has two main functions: first to determine the cause of the problem, 
and second to determine how to fix it. Thus the general form of a repair strategy is a 
sequence of repair tactics. Each repair tactic is guarded by a pre-condition that deter-
mines whether that tactic is applicable. The evaluation of a tactic’s pre-condition will 
usually involve the examination of various properties of the architecture in order to 
pinpoint the problem and determine applicability. If it is applicable, the tactic exe-
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cutes a repair script that is written as an imperative program using the style-specific 
operators described above. 

To handle the situation that several tactics may be applicable, the enclosing repair 
strategy decides on the policy for executing repair tactics. It might apply the first 
tactic that succeeds. Alternatively, it might sequence through all of the tactics, or use 
some other style-specific policy. 

The final complication associated with repair strategies is the use of transactions. 
The body of a repair strategy is typically enclosed within a transactional scope so that 
if an error occurs during the execution of a repair, the system can abort the repair, 
leaving the architecture in a consistent state. Failure of a repair strategy can be caused 
by a number of factors. For example, it may be the case that none of the tactics have 
applicable firing conditions. Or, an applicable tactic may find that conditions of the 
actual system or its environment do not permit it to carry out its repair script. Transac-
tion aborts cause the system to inform the user of a system error that cannot be han-
dled by the automated mechanisms. 

Choosing Tactics 
One of the principal advantages of allowing the system designer to pick an appropri-
ate style is the ability to exploit style-specific analyses to determine whether repair 
tactics are sound. By sound, we mean that if executed, the changes will help reestab-
lish the violated constraint.  

In general, an analytical method for an architecture will provide a compositional 
method for calculating some system property in terms of the properties of its parts. 
For example, a reliability analysis will depend on the reliability of the architectural 
parts, while a performance analysis will depend on various performance attributes of 
the parts. By looking at the constraint to be satisfied, the analysis can often point the 
repair strategy writer both to the set of possible causes for constraint violation, and for 
each possible cause, to an appropriate repair. 

For instance, one type of analysis appropriate to the pipe-filter style is throughput 
analysis. Such an analysis allows one to characterize a batch-processing pipe-filter 
system by the ratio of the input quantity to the output quantity (say, in terms of re-
cords), and compose the overall ratio from the ratio of each individual filter based on 
connection topology. The administrator of this system might want to enforce a con-
straint on the system in terms of this input-output ratio. Violation of this throughput 
ratio constraint suggests congestion of processing within the system. The associated 
repair strategy can then use a more fine-grained throughput analysis to pinpoint the 
segment or the particular filter causing the congestion. 

4.4 Bridging the Gap to Implementation 

As we have argued, the use of style allows us to provide automated support for archi-
tectural adaptation at the model level. That is, we can use the constraints, operators, 
and analytical methods to determine how to modify the architecture. 

The only catch is that we somehow have to relate all of that to the real world. 
There are two parts to this. The first is getting information out of the executing system 
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so we can determine when architectural constraints are violated. The second is propa-
gating architectural repairs into the system itself. 

4.4.1 Monitoring 
In order to provide a bridge from system level behavior to architecturally-relevant 
observations, we have defined a three-level approach illustrated in Figure 8. This 
monitoring infrastructure is described in more detail elsewhere [13]: here we summa-
rize the main features, stressing the connection with style specifications. 

The lowest level is a set of probes, which are “deployed” in the target system or 
physical environment.5 Probes monitor the system and announce observations via a 
“probe bus.” At the second level a set of gauges consumes and interprets lower-level 
probe measurements in terms of higher-level model properties. Like probes, gauges 
disseminate information via a “gauge reporting bus.” The top-level entities in Figure 8 
are gauge consumers, which consume information disseminated by gauges. Such 
information can be used, for example, to update an abstraction/model, to make system 
repair decisions, to display warnings and alerts to system users, or to show the current 
status of the running system. 

The separation of the monitoring infrastructure into these parts helps isolate sepa-
rable concerns. Probes are highly implementation-specific, and typically require de-
tailed knowledge of the execution environment. Gauges are model-specific. They 
need only understand how to convert low-level observations into properties of more 
abstract representations, such as architectural models. Finally, gauge consumers are 
free to use the interpreted information to cause various actions to occur, such as dis-
playing warnings to the user or automatically carrying out repairs. 

In the context of architectural repair, we use the architectural style to inform us 
where to place gauges. Specifically, for each constraint that we wish to monitor, we 
must place gauges that dynamically update the properties over which the constraint is 
defined. In addition, our repair strategies may require additional monitored informa-
tion to pinpoint sources of problems and execute repair operations. 
                                                           
5 For monitoring, we utilize the terminology defined by the DASADA program, funded by 

DARPA. 

Abstraction 
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Target system 
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Gauge 
consumers

Gauges
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Probe bus

report report
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Fig. 3. Gauge Infrastructure. 
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While it may be necessary to develop gauges for each different style, and probes 
for each specific implementation, we can gain some leverage by using general moni-
toring technologies. For example, if the concerns are bandwidth or latency then it is 
possible to use general network gauges (for example, those based on Remos [13]) to 
report the bandwidth, regardless of the adaptation. Similarly, it is possible to use 
general probe technology to ameliorate the task of writing probes for particular im-
plementations. For example, while it might be necessary to choose which particular 
method calls need to be monitored in a particular implementation, it is possible to use 
existing technologies like ProbeMeister [39] to generate the actual probes, without 
writing any additional code.  

4.4.2 Repair Execution 
The final component of our adaptation framework is a translator that interprets repair 
scripts as operations on the actual system (Figure 1, item 6). As we noted earlier, we 
assume that the executing system provides a set of system-changing operations via a 
Runtime Manager. The nature of these operations will depend heavily on the implemen-
tation platform. In general, a given architectural operation will be realized by some 
number of lower level system reconfiguration operations. Each such operator can 
raise exceptions to signal a failure. The Translator then propagates them to the model 
level, where transaction boundaries can cause the repair strategy to abort. 

Even though the system-changing operations are system specific, the mechanisms 
for propagating system changes can be fairly general, subject to the constraints of the 
implementation platform. These mechanisms can be as simple as socket communica-
tion, RPC, or Java RMI, or as complicated as mobile-code or an entire change propa-
gation technology. 

4.4.3 Putting the Pieces Together 
Let us summarize how the parts work together, end-to-end, and how pieces of the 
framework in Figure 1 interact. While the system is running, relevant system proper-
ties are observed and collected by gauges in the Monitoring Mechanisms and updated on 
the Architectural Model. Whenever there is a change in a gauge value, the Analyzer in the 
Architecture Manager re-evaluates the architectural constraints to check for violation. 
Suppose that a latency constraint violation is detected in some Client role, then the 
Analyzer calls the Repair Handler to trigger a repair. The Repair Handler first signals the 
Analyzer to suspend all monitoring and captures a “snapshot” of the current state of the 
Architectural Model – doing so prevents other constraint violation from interfering with 
the present repair and preserves the property values at the time of constraint violation 
to facilitate decision-making. The Repair Handler then begins running the repair script.  

The Repair Handler executes repair scripts, which involve calls to the style opera-
tors. These calls are executed by the Style API Interpreter, which interprets the calls as 
primitive architectural operators to update the Architectural Model (via the Generic API). 
The Style API Interpreter also passes the style operator calls to the Translator. 

The Translator translates architectural style operations into implementation opera-
tions and passes them to the Runtime Manager, which executes it to make changes to 
the Executing System. The implementation operations have exceptions not shown that 
may be raised if execution fails. The Translator would then pass the exception signal 
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back to the Repair Handler, which aborts the repair transaction. Whether the repair 
transaction commits or aborts the Repair Handler signals to the Analyzer to resume sys-
tem monitoring and resets appropriate gauges. 

At this point, as part of the dynamic verification to ensure that the repair was effec-
tive, the constraints are re-evaluated to determine whether any violations are now 
fixed, and the repair cycle completes. If a violation remains, or if a new violation is 
detected, the repair is triggered again and the process repeats. 

5. Performance Adaptation of a Web-Based Server-Client System 

In this section we give a detailed end-to-end description of how each of the elements 
in our adaptation framework come together to achieve runtime adaptation. We use the 
example described in Section 3 to illustrate our technique. The example is simple load 
balancing of a web-based client-server system. This is example is used simply to 
illustrate how our technique works; we are not proposing that this technique be ap-
plied to load-balancing of such systems – a technique that is already embedded in 
many systems. 

Family PerformanceClientServerFam extends ClientServerFam with { 
 Component Type PAClientT extends ClientT with { 
  Properties  { 
   Requests : sequence <any>; 
   ResponseTime : float; 
   ServiceTime : float; 
  }; 
 }; 
 Connector Type PALinkT extends LinkT with { 
  Properties { 
   DelayTime : float; 
  }; 
 }; 
 Component Type PAServerGroupT extends ServerGroupT with { 
  Properties { 
   Replication : int <<default : int = 1;>>; 
   Requests : sequence <any>; 
   ResponseTime : float; 
   ServiceTime : float; 
   AvgLoad : float; 
  }; 
  Invariant AvgLoad > minLoad; 
 }; 
 Role Type PAClientRoleT extends ClientRoleT with { 
  Property averageLatency : float; 
  Invariant averageLatency < maxLatency; 
 }; 
 
 Property maxLatency : float; 
 Property minLoad : float; 
}; 

Fig. 4. Client/Server Style Extended for Analysis. 
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5.1 Defining a Client-Server Architectural Style 

Figure 4 contains a partial description of the style used to characterize the class of 
web-based systems of our example. The style is actually defined in two steps. The 
first step specifies a generic client-server style (called a family in Acme). It defines a 
set of component types: a web client type (ClientT), a server group type (ServerGroupT), 
and a server type (ServerT). It also defines a connector type (LinkT). Constraints on the 
style (appearing in the definition of LinkT) guarantee that the link has only one role for 
the server. Other constraints, not shown, further define structural rules (for example, 
that each client must be connected to a server). 

There are potentially many possible kinds of analysis that one might carry out on 
client-server systems built in this style. Since we are particularly concerned with 
overall system performance, we augment the client-server style to include perform-
ance-oriented properties. These include the response time and degree of replication 
for servers and the delay time over links. This style extension is shown in Figure 5. 
Constraints on this style capture the desired performance related behavior of the sys-
tem. The first constraint, associated with PAServerGroupT, specifies that a server group 
should not be under-utilized. The second constraint, as part of the PAClientRoleT, speci-
fies that the latency on this role should not be above some specified maximum. 

 
Having defined an appropriate style, we can now define a particular system con-

figuration in that style, such as the one illustrated in Figure 6.  

Family ClientServerFam = { 
 Component Type ClientT = {…}; 
 Component Type ServerT = {…}; 
 
  Component Type ServerGroupT = {…}; 
 
 Role Type ClientRoleT = {…}; 
 Role Type ServerRoleT = {…}; 
 
 Connector Type LinkT = { 
  invariant size(select r : role in Self.Roles |  
        declaresType(r, ServerRoleT)) == 1; 
      invariant size(select r : role in Self.Roles |  
         declaresType(r, ClientRoleT)) >= 1; 
      Role ClientRole1 : ClientRoleT; 
      Role ServerRole : ServerRoleT; 
 }; 
}; 

 Fig. 5. Client/Server Style Definition. 
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5.2 Using M/M/m Performance Analysis to Set Initial Conditions 

The use of buffered request queues, together with replicated servers, suggests using 
queuing theory to understand the performance characteristics of systems built in the 
client-server style above. As we have shown elsewhere [35], for certain architectural 
styles queuing theory is useful for determining various architectural properties includ-
ing system response time, server response time (Ts), average length of request queues 
(Qs), expected degree of server utilization (us), and location of bottlenecks. 

In the case of our example style, we have an ideal candidate for M/M/m analysis.  
The M/M indicates that the probability of a request arriving at component s, and the 
probability of component s finishing a request it is currently servicing, are assumed to 
be exponential distributions (also called “memoryless,” independent of past events); 
requests are further assumed to be, at any point in time, either waiting in one compo-
nent’s queue, receiving service from one component, or traveling on one connector.  
The m indicates the replication of component s; that is, component s is not limited to 
representing a single server, but rather can represent a server group of m servers that 
are fed from a single queue.  Given estimates for clients’ request generation rates and 
servers’ service times (the time that it takes to service one request), we can derive 
performance estimates for components according to Table 1. To calculate the ex-
pected system response time for a request, we must also estimate the average delay Dc 
imposed by each connector c, and calculate, for each component s and connector c, 
the average number of times (Vs, Vc) it is visited by that request.  (Given Vs and the 
rates at which client components generate requests, we can derive rather than estimate 
Rs, the rate at which requests arrive at server group s.) 

Component ServerGrp1 
(ServerGrpRep) 

Server1 Server2 Server3 

Client1 Client2 Client3 Client4 Client5 Client6 

ServerGrp3 

Component ServerGrp1 
(ServerGrpRep) 

Server1 Server2 Server3 

Fig. 6. Architectural Model of Example System. 

ServerGrp2 ServerGrp3 
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Applying this M/M/m theory to our style tells us that with respect to the average 
latency for servicing client requests, the key design parameters in our style are (a) the 
replication factor m of servers within a server group, (b) the communication delay D 
between clients and servers, (c) the arrival rate R of client requests and (d) the service 
time S of servers within a server group.   

In previous work [35] we showed how to use this analysis to provide an initial con-
figuration of the system based on estimates of these four parameters. In particular, 
Equation (5) in Table 1 indicates for each server group a design tradeoff between 
utilization (underutilized servers may waste resources, but provide faster service) and 
response time. Utilization is in turn affected by service time and replication. Thus, 
given a range of acceptable utilization and response time, if we choose service time 
then replication is constrained to some range (or vice versa). As we will show in the 
next section, we can also use this observation to determine sound run time adaptation 
policies. 

We can use the performance analysis to decide the following questions about our 
architecture, assuming that the requirements for the initial system configuration are 
that for six clients each client must receive a latency not exceeding 2 seconds for each 
request and a server group must have a utilization of between 70% and 80%: 
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• How many replicated servers must exist in a server group so that the server group 
is properly utilized? 

• Where should the server group be placed so that the bandwidth (modeled as the 
delay in a connector) leads to latency not exceeding 2 seconds? 
Given a particular service time and arrival rate, performance analysis of this model 

gives a range of possible values for server utilization, replication, latencies, and sys-
tem response time. We can use Equation (5) to give us an initial replication count and 
Equation (6) to give us a lower bound on the bandwidth. If we assume that the arrival 
rate is 180 requests/sec, the server response time is between 10ms and 20ms the aver-
age request size is 0.5KB, and the average response size is 20KB, then the perform-
ance analysis gives us the following bounds: 

Initial server replication count= 3-5 
Zero-delay System Response Time = 0.013-0.026 seconds 

Therefore, 
0 < Round-trip connector delay < 1.972 seconds, or 
0 < Average connector delay < .986 seconds 

Thus, the average bandwidth over the connector must be greater than 10.4KB/sec. 
This analysis provides several key criteria for monitoring the running system. First, if 
latency increases undesirably, then we should check to ensure that the bandwidth 
assumption still holds between a client and its server. Second, if bandwidth is not the 
causing factor, then we should examine the load on the server. 

5.3 Defining Adaptation Operators 

The client-server architectural style suggests a set of style-specific adaptation opera-
tors that change the architectural while ensuring the style constraints. These operators 
are: 
• addServer(): This operation is applied to a component of type ServerGroupT and 

adds a new component of type ServerT to its representation, ensuring that there is a 
binding between its port and the ServerGroup’s port. 

• move(to:ServerGroupT): This operation is applied to a client and first deletes the 
role currently connecting the client to the connector that connects it to a server 
group. It then performs the necessary attachment to a LinkT connector that will con-
nect it to the server group passed in as a parameter. If no such connector exists, it 
will create one and connect it to the server group. 

• remove(): This operation is applied to a server and deletes the server from its con-
taining server group. Furthermore, it changes the replication count on the server 
group and deletes the binding. 
The above operations all effect changes to the model. The next operation queries 

the state of the running system: 
• findGoodSGroup(cl:ClientT,bw:float):ServerGroupT;  finds the server group with 

the best bandwidth (above bw) to the client cli, and returns a reference to the server 
group. 
These operators reflect the considerations just outlined. First, from the nature of a 

server group, we get the operations of adding or removing a server from a group. 
Also, from the nature of the asynchronous request connectors, we get the operations 
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of adapting the communication path between particular clients and server groups. 
Second, based on the knowledge of supported system change operations, outlined in 
Section 4.4, we have some confidence that the architectural operations are actually 
achievable in the executing system. 

5.4 Defining Repair Strategies to Maintain Performance 

Recall that the queuing theory analysis points to several possible causes for why la-
tency could increase. Given these possibilities, we can show how the repair strategy 
developed from this theoretical analysis. The equations for calculating latency for a 
service request (Table 1) indicate that there are four contributing factors: (1) the con-
nector delay, (2) the server replication count, (3) the average client request rate, and 
(4) the average server service time. Of these we have control over the first two. When 
the latency is high, we can decrease the connector delay (by moving clients to servers 
that are closer) or increase the server replication count to decrease the latency. Deter-
mining which tactic depends on whether the connector has a low bandwidth (in-
versely proportional to connector delay) or if the server group is heavily loaded (in-
versely proportional to replication). These two system properties form the precondi-
tions to the tactics; we have thus developed a repair strategy with two tactics. 

Applying the Approach 
We specify repair strategies using a repair language that supports basic flow control, 
Armani constraints, and simple transaction semantics. Each constraint in an architec-
tural model can be associated with a repair strategy, which in turn employs one or 
more repair tactics. 

Figure 7 (lines 1-3) illustrates the repair strategy associated with the latency 
threshold constraint. In line 2, “! ” denotes “if constraint violated, then execute.” 
The top-level repair strategy in lines 5-17, fixLatency, consists of two tactics. The first 
tactic in lines 19-31 handles the situation in which a server group is overloaded, iden-
tified by the precondition in lines 24-26. Its main action in lines 27-29 is to create a 
new server in any of the overloaded server groups. The second tactic in lines 33-48 
handles the situation in which high latency is due to communication delay, identified 
by the precondition in lines 34-36. It queries the running system to find a server group 
that will yield a higher bandwidth connection in lines 40-41. In lines 42-44, if such a 
group exists it moves the client-server connector to use the new group. The result of 
an instance of this repair on Figure 6 is depicted in Figure 8. The repair strategy uses 
a policy in which it executes these two tactics sequentially: if the first tactic succeeds 
it commits the repair strategy; otherwise it executes the second. The strategy will 
abort if neither tactic succeeds, or if the second tactic finds that it cannot proceed 
since there are no suitable server groups to move the connection to.  
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01 invariant r.averageLatency <= maxLatency 
02 !  
03  fixLatency(r); 
04 
05 strategy fixLatency (badRole: ClientRoleT) = { 
06  begin repair-transaction; 
07  let badClient: ClienT = 
08   select one cli: ClientT in self.Components | 
09    exists p: RequestT in cli.Ports | attached(badRole, p); 
10  if (fixServerLoad(badClient)) { 
11   commit repair-transaction; 
12  else if (fixBandwidth(badClient, badRole) { 
13   commit repair-transaction; 
14  } else { 
15   abort(ModelError); 
16  } 
17 } 
18 
19 tactic fixServerLoad (client: ClientT) : boolean = { 
20  let overloadedServerGroups: Set{ServerGroupT} = 
21   { select sgrp: ServerGroupT in self.Components | 
22    connected(sgrp, client) and 
23    sgrp.AvgLoad > maxServerLoad }; 
24  if (size(overloadedServerGroups) == 0) { 
25   return false; 
26  } 
27  foreach sGrp in overloadedServerGroups { 
28   sGrp.addServer(); 
29  } 
30  return (size(overloadedServerGroups) > 0); 
31 } 
32 
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = { 
34  if (role.Bandwidth >= minBandwidth) { 
35   return false; 
36  } 
37  let oldSGrp: ServerGroupT = 
38   select one sGrp: ServerGroupT in self.Components | 
39    connected(client, sGrp); 
40  let goodSGrp: ServerGroupT = 
41   findGoodSGrp(client, minBandwidth); 
42  if (goodSGrp != nil) { 
43   client.moveClient(oldSGrp, goodSGrp); 
44   return true; 
45  } else { 
46   abort(NoServerGroupFound); 
47  } 
48 } 

Fig. 7. Repair Tactic for High Latency. 
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5.5 Style-Based Monitoring 

In our example above we are concerned with the average latency of client requests. 
To monitor this property, we must associate a gauge with the averageLatency property 
of each client role (see the definition of ClientRoleT in Figure 4). This latency gauge in 
turn deploys a probe into the implementation that monitors the timing of reply-request 
pairs. When it receives such monitored values it averages them over some window, 
updating the latency property in the architecture model when it changes. The latency 
gauge that we use is not specific to this style, or indeed to this implementation. The 
gauges utilizes probes that use the Remos network monitoring service, which in turn 
uses the SNMP to ascertain properties of the network. 

But average latency is not the only architectural property that we need to monitor. 
The repair tactics, derived from queuing theoretic model of performance analysis, rely 
on information about two additional constraints: whether the bandwidth between the 
client and the server is low or whether the server group is overloaded (or both). Thus, 
to determine why latency is high in the architecture, we need to monitor these two 
properties. The gauge for measuring bandwidth uses the same probe used by the la-
tency gauge for measuring the time it takes to receive a reply. An additional probe 
measures the size of the reply and calculates the bandwidth based on these values. 
Determining the load on the server can be done in a number of ways. We measure the 
size of a request queue to indicate whether the server group is overloaded. 
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Fig. 8. Model of System After Low Bandwidth Repair. 
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5.6 Mapping Architectural Operators to Implementation Operators 

To illustrate, the specific operators and queries supported by the Runtime Manager in 
our example are listed in Table 2. These operators include low-level routines for cre-
ating new request queues, activating and deactivating servers, and moving client 
communications to a new queue. 

The Translator for our example maps the Style API Interpreter operations described in 
Section 4.3.1 to the Runtime Manager operations using the scheme summarized in Ta-
ble 2. (Parameters passed between the levels also need to be translated. We do not 
discuss this here.) The actual map involves mapping model-level parameters to im-
plementation level parameters, and mapping return values to model values. 

5.7 Putting the Pieces Together 

As an example of how the adaptation framework fits together in our implementation, 
we will consider one cycle of the repair, starting with a latency probe reporting a 
value, and ending with a client moving to a new server group. This cycle indicates 
how the architecture in Figure 6 is transformed into the architecture in Figure 8. 
1. The bandwidth probe on the link between Client4 and ServerGroup1 reports a band-

width of 18KB/sec to the probe bus. 
2. The latency gauge attached to Client4’s role combines this value with the average 

size of requests that it has seen, and calculates an average latency of 2.5secs, which 
it reports to the gauge bus. Similarly, the bandwidth gauge attached to Client4’s 
role reports a bandwidth of 18KB/sec to the gauge bus. 

3. The Architecture Manager, implemented as a gauge consumer, receives these val-
ues and adjusts the averageLatency and bandwidth properties of Client4’s role.  

4. The Analyzer, implemented using our Armani constraint analyzer, reevaluates 
constraints. The constraint averageLatency < maxLatency in Client4’s role fails. 

5. Tailor, the repair handler, is invoked and pauses monitoring before starting to exe-
cute the repair strategy in Figure 7, passing Client4’s role as a parameter. 

6. The repair strategy first attempts to fix the server load, but returns false because no 

Table 2. Mapping Between Architecture and Implementation Operations 

Model Level Environment Level 

addServer 
findServer 

activateServer 
connectServer 

moveClient 
createReqQue 
moveClient 

findGoodSGrp 
Conditionals + multiple 

calls to 
remos_get_flow 
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servers are overloaded. 
7. The repair strategy attempts to fix the bandwidth. It examines the bandwidth prop-

erty of the role, and determines that it is larger than 10.4KB/sec (line 34). It then 
calls the architectural operator findGoodSGrp to find the server group with the best 
bandwidth. This invokes queries to remos_get_flow. 

8. The operator findGoodSGrp returns ServerGroup2 now has the best bandwidth and 
initiates the moveClient operator (line 43). This in turn invokes the change interface 
for the application to effect the move. 

6. Implementation Status 

In terms of the adaptation framework in Figure 1, our implementation contains the 
following pieces: 

Monitoring Mechanisms: Our approach is general enough to be used with exist-
ing technologies for monitoring systems and their environments. To connect with the 
infrastructure described in Section 4.4.1, a wrapper needs to be written for these tech-
nologies that allows events to be generated according to the probe infrastructure, 
mentioned in Figure 8, turning the technology into a probe. We have developed proto-
type probes for gathering information out of networks, based on the Remos system 
[21]. We have developed general-purpose gauges that can be used to report data about 
expected and observed bandwidth and latencies based on data from this system.  

Other technology has also been successfully integrated into our infrastructure, most 
notably the ProbeMeister system for unobtrusively monitoring Java classes [39], and 
the Event Packager and Event Distiller systems for monitoring temporal events from 
executing systems [17]. In addition, we have produced gauges that monitor the adher-
ence of elements of the architecture to protocols expressed in FSP [23]. 

Architectural Models: AcmeStudio, a design environment that allows architec-
tures to be described in Acme, has been modified so that it provides run time observa-
tion of a software architecture [34]. A general library has been developed that can be 
integrated with other architectural tools to associate gauge information with architec-
tural models. 

Architectural Analysis: We have modified our tool for evaluating Armani con-
straints at design times so that it evaluates constraints dynamically at run time. 

Repair Handler: The Armani constraint evaluator has been augmented so that it 
supports the specification and execution of repairs. 

Translator and Runtime Manager: Currently, we have hand-tailored support for 
these components that need to be changed for each implementation. Our work in this 
area will concentrate on providing more general mechanisms where appropriate, and 
perhaps using off-the-shelf reconfiguration commands for commercial systems. In 
fact, we are actively investigating how to utilize the Workflakes system for a more 
general solution to the problem of mapping between architecture and implementation.  
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7. Experience 

Thus far we have experimented with architectural adaptation for two kinds of sys-
tem properties: (1) performance for web-based systems, illustrated earlier, and (2) 
protocol conformance. 

To evaluate the effectiveness of our adaptation framework for performance-
oriented adaptation, we conducted an experiment to test system adaptation using a 
dedicated, experimental testbed consisting of five routers and eleven machines com-
municating over 10 Mbps lines. The implementation that we used for our experiment 
was based on the example presented in this paper – that of a client-server system 
using replicated server groups communicating over a distributed system. System loads 
were fabricated in three segments over 30 minutes so that we could observe the self-
repair behavior of the system.  

The results showed that for this application and the specific loads used in the ex-
periment, self-repair significantly improved system performance. Figures 9 and 10 
show sample results for the system performance without adaptation, and with, respec-
tively. (See [7] for details.) However, it also revealed, perhaps not unexpectedly, that 
externalized repair introduces some significant latency. In our system it took several 
seconds for the system to notice a performance problem and several more seconds to 
fix it. Although we can imagine speeding up the roundtrip repair time, this does indi-
cate that the approach is best suited for repair that operates on a global scale, and that 
handles longer term trends in system behavior. 
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Fig. 9. Average Latency for Control (No Repair). 
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The second application of the approach has been to monitor and check protocols of 
interaction between components. Connectors are associated with protocol constraints 
that indicate the allowed order of communication events. These are defined in a proc-
ess algebra, FSP [23], and then used by “protocol gauges” at run time to detect when 
communicating components fail to respect the specified protocols. For example, a 
protocol error might occur when a component attempts to write data to a pipe after it 
has closed that pipe, or if a client attempts to communicate with a server without first 
initializing its session. 

8. Discussion 

We have described an approach in which architecture-based self-adaptation is sup-
ported by the incorporation of styles as an explicit design choice in the adaptation 
framework. The flexibility inherent in this approach permits the system maintainer to 
pick a style that matches well to existing implementation bases, provides a formal 
basis for specifying constraints, and can permit the definition of repair policies that 
are justified by analytic methods. 

However, this flexibility also introduces several new complexities over other ap-
proaches in which the choice of architectural style is hardwired into the framework. In 
particular, at least three critical questions are raised: First, is it always possible to map 
architectural repairs into corresponding system changes? Second, is it always possible 
to monitor relevant run time information? Third, is it reasonable to expect that ana-
lytical techniques can address a sufficiently broad set of concerns to inform our repair 
strategies? We address each issue in turn. 

Model-Implementation Map: In our approach the ability to map architectural 
changes to corresponding implementation reconfigurations is moderated by two fac-
tors. First is an assumption that systems provide a well-defined set of operations for 
modifying a running system. Of course, in general this may not be true. Some systems 

Fig. 10.  Average Latency under Repair. 
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are inherently not reconfigurable, in which case our approach would simply not work. 
However, many systems do in fact embody changing operations – such as the ability 
to load dynamic libraries and remote code, to redirect communications to alternative 
pathways, or to do dynamic resource management. Moreover, we would argue that 
such capabilities are going to be increasingly prevalent in modern systems that are 
intended to function in a connected, service-based universe. For example, modern 
frameworks like Jini provide as a fundamental building block the notion of allocation 
and deallocation of resources, and location-independence of services. 

The other moderating factor is an assumption that architectural style is not chosen 
arbitrarily. Obviously, attempting to pair an arbitrary style with an arbitrary imple-
mentation could lead to considerable difficulty in relating the two. However, one of 
the hallmarks of our approach is that it encourages one to match an appropriate style 
to an implementation base. Hence, in fact, the flexibility of choosing a style can actu-
ally help reduce the gap between system implementations and architectural models. 

Implementation-Model Map: For our approach to work it must be possible to re-
flect dynamic system state into an architectural model. To do this we provide a multi-
leveled framework that separates concerns of low-level system instrumentation from 
concerns of abstracting those results in architecturally meaningful terms. What makes 
us think that either part will be feasible in the general case? 

The ability to monitor systems is itself an active research area. Increasingly sys-
tems are expected to provide information that can be used to determine their health. 
Moreover, there is an increasingly large number of non-intrusive post-deployment 
monitoring schemes. For example, to deal with network performance we were able to 
use a monitoring infrastructure developed completely independently. It in turn relies 
on the standard protocol SNMP. Other researchers and practitioners are developing 
many other schemes such as the ability to place monitors between COM components, 
the ability to monitor network traffic to determine security breaches, the ability to 
monitor object method calls, and various probes that determine whether a given com-
ponent is alive.  

In terms of mapping low-level information to architectural information, the capa-
bility will certainly depend on the distance between the architectural and implementa-
tion styles. As we argued earlier, our approach encourages developers to pick styles 
where that mapping will be straightforward. 

Analytical Methods: A key feature of our approach is the notion that repair strate-
gies should leverage architectural analyses. We demonstrated one such analysis for 
performance. What makes us think that others exist? In fact, there is considerable 
work recently on finding good architecture-based analyses. For example, Klein et al. 
[19] provide a method of reasoning about the behavior of component types that inter-
act in a defined pattern. In earlier work we showed how to adapt protocol analysis to 
architectural modification [3]. Others have shown how real-time schedulability can be 
applied [38]. Although far from providing a complete repertoire of analytical tech-
niques, the space is rich, and getting richer. 
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9. Conclusion and Future Work 

In this paper we have presented a technique for using software architectural styles to 
automate dynamic repair of systems. In particular, styles and their associated analyses 
• make explicit the constraints that must be maintained in the face of evolution 
• direct us to the set of properties that must be monitored to achieve system quality 

attributes and maintain constraints 
• define a set of abstract architectural operators for repairing a system 
• allow us to select appropriate repair strategies, based on analytical methods 
We illustrated how the technique can be applied to performance-oriented adaptation 
of certain web-based systems.  

For future research we see opportunities to improve each of the areas mentioned in 
Section 7. We need to be able to develop mechanisms that provide richer adaptability 
for executing systems. We need new monitoring capabilities, and reusable infrastruc-
ture for relating monitored values to architectures. We need new analytical methods 
for architecture that will permit the specification of principled adaptation policies. 

Additionally we see a number of other key future research areas. First is the inves-
tigation of more intelligent repair policy mechanisms. For example, one might like a 
system to dynamically adjust its repair tactic selection policy so that it takes into 
consideration the history of tactic effectiveness: effective tactics would be favored 
over those that sometimes fail to produce system improvements. Second is the link 
between architectures and requirements. Systems may need to adapt, not just because 
the underlying computation base changes, but because user needs change. This will 
require ways to link user expectations to architectural parameters and constraints. 
Third is the development of concrete instances of our approach for some of the com-
mon architectural frameworks, such as EJB, Jini, and CORBA. 
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