11-721: Grammars and Lexicons Fall Term 2002 Some English rules and lexical entries ========================================================= Annotated Phrase Structure Rules ^ is up arrow. | is down arrow. Grammatical sentences (listed below) should succeed. Ungrammatical sentences should fail. Constraints: Check only; don't unify (f a) =c v true if (a v) is in f (f a) ~= v true if a is not in f true if a is in f with value other than v (f a) true if a is in f with a non-null value Disjunctions: Solve the f-structure using both disjuncts. If both succeed, then the sentence is ambiguous. If both fail, the sentence is ungrammatical. If one succeeds, the sentence has one successful parse. ========================================================= Subject-Verb Agreement Sam goes. *Sam go. The cat lives in the forest. *The cat live in the forest. Determiner-Noun Agreement That cat *That cats A cat *A cats Those cats *Those cat Nominative and accusative pronouns I saw him. *Me saw him. She saw me. *She saw I. Finite main verb He goes. *He go. *He to go. Prepositional Phrases He lives in the forest. He went to school. Completeness and Coherence (Subcategorization) These well-formedness conditions are not implemented in the grammar. So it will be possible to build f-structures for sentences with subcategorization violations. After the f-structure is built, the sentences will fail because of a violation of Completeness (missing an argument) or Coherence (extra argument). Sam devoured the sandwich. *Sam devoured. *Sam devoured in the forest. Sam lives in the forest. Sam ate the sandwich. Sam ate. Sam goes. Sam goes to school. Tensed complement clauses It seems that Sam went to school. I believe that Sam went to school. I decided that Sam went to school. I persuaded Sam that the cat lives in the forest. *I persuaded Sam to the cat lives in the forest. *I persuaded Sam that the cat live in the forest. Infinitival complement clauses The cat seems to live in the forest. I believe the cat to live in the forest. The cat decided to live in the forest. I persuaded the cat to live in the forest. *The cat seems live in the forest. *The cat decided live in the forest. *The cat seems to lives in the forest. Auxiliary Verbs The cat will live in the forest. The cat has lived in the forest. The cat is living in the forest. The cat has been living in the forest. The cat will be living in the forest. The cat will have lived in the forest. The cat will have been living in the forest. Complements of Auxiliary Verbs *The cat will living in the forest. *The cat will lived in the forest. *The cat will lives in the forest. *The cat will to live in the forest. *The cat has lives in the forest. *The cat has living in the forest. *The cat has live in the forest. *The cat is live in the forest. *The cat is lived in the forest. *The cat is lives in the forest. Order of auxiliary verbs Not really handled by this grammar except that "will-ing", "will-ed", and having (as an auxiliary verb) are not in the lexicon. *He has will live in the forest. *He is having lived in the forest. *He is will live in the forest. Auxiliary verbs in embedded clauses It seems that he is going. I decided that she has gone. He seems to have gone. He seems to be going. I believe him to have gone. *He seems to will go. ======================================================== Rule 1: S --> NP VP (^ SUBJ)=| ^=| (| CASE) = nom (^ VFORM) =c fin ---------------------------------------------------------- Rule 2: VP --> V ^=| ---------------------------------------------------------- Rule 3: VP --> V NP ^=| (^ OBJ)=| (| CASE) = acc --------------------------------------------------------- Rule 4: VP --> V PP ^=| (^(| CASE))=| --------------------------------------------------------- Rule 5: VP --> V NP PP ^=| (^ OBJ)=| (^(| CASE))=| (| CASE) = acc --------------------------------------------------------- Rule 6: VP --> V NP NP ^=| (^ OBJ)=| (^ OBJ2) = | (| CASE) = acc ---------------------------------------------------------- Rule 7: VP --> V CP ^=| (^ COMP)=| --------------------------------------------------------- Rule 8: VP --> V NP CP ^=| (^ OBJ)=| (^ COMP)=| --------------------------------------------------------- Rule 9: VP --> V IP ^=| (^ XCOMP)=| --------------------------------------------------------- Rule 10: VP --> V NP IP ^=| (^ OBJ)=| (^ XCOMP)=| --------------------------------------------------------- Rule 11: VP --> V VP ^=| (^ XCOMP)=| --------------------------------------------------------- Rule 12: VP --> V NP VP ^=| (^ OBJ)=| (^ XCOMP)=| -------------------------------------------------------- Rule 13: C' --> C S ^=| ^=| --------------------------------------------------------- Rule 14: IP --> I' ^=| -------------------------------------------------------- Rule 15: I' --> I VP ^=| ^=| --------------------------------------------------------- Rule 16: NP --> (DET) N-1 ^=| ^=| --------------------------------------------------------- Rule 17: N-1 --> N ^=| --------------------------------------------------------- Rule 18: PP --> P (NP) ^=| (^ OBJ)=| (| CASE) = acc ========================================================= Lexicon ========================================================= a DET (^ NUM) = sg (^ DEF) = - -------------------------------------------------------- ate V (^ PRED) = `eat< SUBJ OBJ >' (^ VFORM) = fin (^ TENSE) = past -------------------------------------------------------- ate V (^ PRED) = `eat< SUBJ >' (^ VFORM) = fin (^ TENSE) = past -------------------------------------------------------- bag N (^ PRED) = `bag' (^ NUM) = sg (^ PERS) = 3 -------------------------------------------------------- be V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) = prespart (^ VFORM) = INF ------------------------------------------------------ believe V (^ PRED) = `believe< SUBJ COMP >' ------------------------------------------------------ believe V (^ PRED) = `believe< SUBJ XCOMP >OBJ' (^ OBJ) = (^ XCOMP SUBJ) (^ XCOMP COMPL) =c to ------------------------------------------------------ been V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) = prespart (^ VFORM) = pastpart ------------------------------------------------------- being V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) = prespart (^ VFORM) = prespart (^ AUX) = + -------------------------------------------------------- cat N (^ PRED) = `cat' (^ NUM) = sg (^ PERS) = 3 ------------------------------------------------------- decide V (^ PRED) = `decide< SUBJ XCOMP >' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP COMPL) =c to -------------------------------------------------------- decide-2 V (^ PRED) = `decide< SUBJ COMP >' -------------------------------------------------------- devour V (^ PRED) = `devour< SUBJ OBJ >' -------------------------------------------------------- did V (^ PRED) = `do< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ TYPE) = modal (^ XCOMP VFORM) =c inf (^ XCOMP COMPL) ~= to (^ VFORM) = fin (^ TENSE) = past -------------------------------------------------------- do V (^ PRED) = `do< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c inf (^ XCOMP COMPL) ~= to (^ VFORM) = fin (^ TENSE) = pres { (^ SUBJ NUM) ~= sg | (^ SUBJ PERS) ~= 3 } ------------------------------------------------------- does V (^ PRED) = `do< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c inf (^ XCOMP COMPL) ~= to (^ VFORM) = fin (^ TENSE) = pres (^ SUBJ NUM) = sg (^ SUBJ PERS) = 3 ------------------------------------------------------- doctor N (^ PRED) = doctor (^ PERS) = 3 ------------------------------------------------------ eat V (^ PRED) = `eat< SUBJ >' ------------------------------------------------------- eat V (^ PRED) = `eat< SUBJ OBJ >' ------------------------------------------------------- examine V (^ PRED) = `examine< SUBJ OBJ >' -------------------------------------------------------- forest N (^ PRED) = `forest' -------------------------------------------------------- go V (^ PRED) = `go< SUBJ >' -------------------------------------------------------- go V (^ PRED) = `go< SUBJ OBL-goal>' -------------------------------------------------------- gone V (^ PRED) = `go< SUBJ >' (^ VFORM) = pastpart -------------------------------------------------------- gone V (^ PRED) = `go< SUBJ OBL-goal>' (^ VFORM) = pastpart ---------------------------------------------------------- had V (^ PRED) = `have< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c pastpart (^ XCOMP VOICE)~=passive (^ VFORM) = fin (^ TENSE) = past -------------------------------------------------------- hand V (^ PRED) = `hand< SUBJ OBJ OBL-goal>' -------------------------------------------------------- hand V (^ PRED) = `hand< SUBJ OBJ OBJ2 >' ---------------------------------------------------------- has V (^ PRED) = `have< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c pastpart (^ XCOMP VOICE)~=passive (^ VFORM) = fin (^ TENSE) = pres (^ SUBJ NUM) = sg (^ SUBJ PERS) = 3 ------------------------------------------------------- have-1 V (^ PRED) = `have< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c pastpart (^ XCOMP VOICE)~=passive (^ VFORM) = inf ------------------------------------------------------- he N (^ PRED) = `pro' (^ CASE) = nom (^ NUM) = sg (^ PERS) = 3 (^ GENDER) = masc ---------------------------------------------------------- her N (^ PRED) = `pro' (^ CASE) = acc (^ NUM) = sg (^ PERS) = 3 (^ GENDER) = fem ---------------------------------------------------------- him N (^ PRED) = `pro' (^ CASE) = acc (^ NUM) = sg (^ PERS) = 3 (^ GENDER) = masc -------------------------------------------------------- house N (^ PRED) = `house' ---------------------------------------------------------- I N (^ PRED) = `pro' (^ CASE) = nom (^ NUM) = sg (^ PERS) = 1 ---------------------------------------------------------- in P (^ PRED) = `in < OBJ >' (^ CASE) = OBL-loc ---------------------------------------------------------- is V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) =c prespart (^ VFORM) = fin (^ TENSE) = pres (^ SUBJ NUM) = sg (^ SUBJ PERS) = 3 -------------------------------------------------------- it N (^ PRED) = `pro' (^ NUM) = sg (^ PERS) = 3 ---------------------------------------------------------- it-2 N (^ FORM) = it ----------------------------------------------------------- live V (^ PRED) = `live< SUBJ OBL-loc >' ------------------------------------------------------ persuade V (^ PRED) = `perusade< SUBJ OBJ COMP >' ------------------------------------------------------- persuade V (^ PRED) = `perusade< SUBJ OBJ XCOMP >' (^ OBJ) = (^ XCOMP SUBJ) (^ XCOMP COMPL) =c to ---------------------------------------------------------- Sam N (^ PRED) = `sam' (^ NUM) = sg (^ PERS) = 3 --------------------------------------------------------- sandwich N (^ PRED) = sandwich (^ PERS) = 3 -------------------------------------------------------- saw V (^ PRED) = `see< SUBJ OBJ >' (^ VFORM) = fin (^ TENSE) = past -------------------------------------------------------- school N (^ PRED) = `school' -------------------------------------------------------- see V (^ PRED) = `see< SUBJ OBJ >' ---------------------------------------------------------- seem V (^ PRED) = `seem< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP COMPL) =c to ------------------------------------------------------- seem-2 V (^ PRED) = `seem< COMP >SUBJ' (^ SUBJ FORM) =c it -------------------------------------------------------- seen V (^ PRED) = `see< SUBJ OBJ >' (^ VFORM) = pastpart -------------------------------------------------------- she N (^ PRED) = `pro' (^ CASE) = nom (^ NUM) = sg (^ PERS) = 3 (^ GENDER) = fem -------------------------------------------------------- that N (^ PRED) = `pro' (^ NUM) = sg (^ PERS) = 3 (^ PROX) = far -------------------------------------------------------- that-2 DET (^ DEF) = + (^ NUM) = sg (^ PROX) = far -------------------------------------------------------- that-3 C (^ TENSE) -------------------------------------------------------- the DET (^ DEF) = + ------------------------------------------------------- this DET (^ DEF) = + (^ NUM) = sg (^ PROX) = near -------------------------------------------------------- this N (^ PRED) = `pro' (^ NUM) = sg (^ PERS) = 3 (^ PROX) = near -------------------------------------------------------- them N (^ PRED) = `pro' (^ NUM) = pl (^ PERS) = 3 (^ CASE) = acc -------------------------------------------------------- these DET (^ DEF) = + (^ NUM) = pl (^ PROX) = near -------------------------------------------------------- these N (^ PRED) = `pro' (^ NUM) = pl (^ PERS) = 3 (^ PROX) = near -------------------------------------------------------- they N (^ PRED) = `pro' (^ NUM) = pl (^ PERS) = 3 (^ CASE) = nom -------------------------------------------------------- those DET (^ DEF) = + (^ NUM) = pl (^ PROX) = far -------------------------------------------------------- those N (^ PRED) = `pro' (^ PERS) = 3 (^ NUM) = sg (^ PROX) = far -------------------------------------------------------- to P (^ PRED) = `to< OBJ >' (^ CASE) = OBL-goal -------------------------------------------------------- to-2 I (^ VFORM) = inf (^ COMPL) = to --------------------------------------------------------- try V (^ PRED) = `try< SUBJ XCOMP >' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP COMPL) =c to -------------------------------------------------------- us N (^ PRED) = `pro' (^ PERS) = 1 (^ NUM) = pl (^ CASE) = acc --------------------------------------------------------- was V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) = prespart (^ VFORM) = fin (^ TENSE) = past (^ SUBJ NUM) = sg { (^ SUBJ PERS) = 1 | (^ SUBJ PERS) = 3 } ------------------------------------------------------- we N (^ PRED) = `pro' (^ PERS) = 1 (^ NUM) = pl (^ CASE) = nom ------------------------------------------------------- went V (^ PRED) = `go < SUBJ >' (^ TENSE) = past (^ VFORM) = fin ------------------------------------------------------- went V (^ PRED) = `go< SUBJ OBL-goal>' (^ TENSE) = past (^ VFORM) = fin ------------------------------------------------------- were V (^ PRED) = `be< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ XCOMP VFORM) = prespart (^ VFORM) = fin (^ TENSE) = past (^ SUBJ NUM) = sg { (^ SUBJ PERS) = 2 | (^ SUBJ NUM) = pl } --------------------------------------------------------- will V, C (^ PRED) = `will< XCOMP >SUBJ' (^ SUBJ) = (^ XCOMP SUBJ) (^ TYPE) = modal (^ XCOMP VFORM) =c inf (^ XCOMP COMPL) ~= to (^ VFORM) = fin --------------------------------------------------------- you N (^ PRED) = `pro' (^ PERS) = 2 (^ NUM) = sg ------------------------------------------------------- you N (^ PRED) = `pro' (^ PERS) = 2 (^ NUM) = pl ========================================================= Suffixes ========================================================= null suffix for nouns (^ NUM) = sg --------------------------------------------------------- -s for nouns (^ NUM) = pl --------------------------------------------------------- null suffix for verbs (^ TENSE) = pres {(^ SUBJ NUM) ~= sg | (^ SUBJ PERS) ~= 3} (^ VFORM) = fin ---------------------------------------------------------- null suffix for verbs (^ VFORM) = inf ---------------------------------------------------------- -s suffix for verbs (^ SUBJ NUM) = sg (^ SUBJ PERS) = 3 (^ TENSE) = pres (^ VFORM) = fin ---------------------------------------------------------- -ed suffix for verbs (^ TENSE) = past (^ VFORM) = fin ---------------------------------------------------------- -ed/-en suffix for verbs (^ VFORM) = pastpart ---------------------------------------------------------- -ing suffix for verbs (^ VFORM) = prespart