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Formal Languages

• A mathematical abstraction of real languages: Natural Languages and
Computer Languages

• A language is no more than a set of items called words (the equivalent of
sentences in a natural language)

• Languages can be defined declaratively, descriptively or computationally

• Formal Language Theory: The study of properties of the various types and
classes of languages using formal mathematical proofs

• Fundamental problem - word membership:
Given a word w and a language L - is w ∈ L?

• what algorithm or computational device is necessary to answer this question
depends on the class of the language
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Basic Definitions

• Σ: the alphabet - a finite (non-empty) set of atomic symbols

– each symbol σ in the set is a letter
– letters are denoted by lower case Latin letters a, b, c,...

• a word is a string of letters from a given alphabet Σ

• |w| denotes the length of word w

• ε denotes the empty word: |ε| = 0

• we only consider words of finite length

• Def: a language L is a set (finite or infinite) of words constructed from a given alphabet
Σ

• Examples: L1 = {ε} L2 = Ø L3 = {anbn|n ≥ 0 }

• Set Theory and operations apply to formal languages:

– union, intersection, complementation, membership

– L = {w ∈ Σ∗|w 6∈ L}

• Important notation:
Σ
∗

= set of all finite words over the alphabet Σ

Σ
i
= set of all words of length i over the alphabet Σ
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Language Classes

• Sets of formal languages that can be defined using a particular descriptive
definition or abstraction of a computational framework

• Examples:

– The set of languages that can be described by Regular Expressions

– The set of languages for which we can construct a Finite State Automaton

– The set of languages that can be defined using a Context-free Grammar

• Knowing the class to which a language belongs will allow us to develop
efficient algorithms for processing the language or deciding membership in
the language
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Deterministic FSA

• Formal Definition of a DFSA: A = (Q, Σ, δ, q0, F ) where:

– Q is a finite set of states

– Σ is a finite alphabet

– q0 ∈ Q is an initial (start) state

– F ⊆ Q is a set of final states

– δ : Q × Σ → Q is the complete transition function

• The language accepted by a DFSA A is defined to be:
L(A) = {w ∈ Σ∗| after computing on w, A is in a state q ∈ F}

• based on the function δ, we define δ̂, the function on words that models the computation
of a DFSA recursively as follows:

– δ̂ : Q × Σ∗ → Q

– δ̂(q, ε) = q ∀q ∈ Q

– δ̂(q, xσ) = δ(δ̂(q, x), σ)

• Formal definition of L(A): L(A) = {w ∈ Σ∗| δ̂(q0, w) ∈ F}

• Def: Regular Language: a language L ⊆ Σ∗ is called regular if there exists some
DFSA A such that L = L(A)

• Examples of regular languages: L = Σ∗ L = {ε} L = (aab)∗
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Context-Free Grammars

• A descriptive generative formalism for specifying the set of words in a
language using production rules

• Formal Definition: a context-free grammar G = (V, T, P, S)

– V is a finite set of variables

– T is a finite set of terminal symbols (similar to Σ for FSAs)

– P is a set of context-free production rules, each of the form
A → α, where α ∈ (V ∪ T )∗

– S is a start non-terminal (S ∈ V )

• Notations:

– we denote elements of V by S, A, B, C...

– we denote elements of T by a, b, c...

– we denote strings over T ∗ by w, x, y...

– we denote strings over (T ∪ V )∗ by α, β, γ...

– we denote single variables or terminals by X, Y, Z...
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Context-Free Grammars

• Example: L = {anbn| n ≥ 1}

G: S --> a S b

S --> a b

• in this case the language L(G) could be specified in a succinct mathematical
form - often this is difficult or not possible
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CFG Derivations

• derivations describe the process of using the context-free rules to derive a
string of terminal symbols

• Definition: let ϕ1, ϕ2 ∈ (V ∪ T )∗.
ϕ1 directly derives ϕ2, denoted by: ϕ1 =⇒G ϕ2,
if ϕ1 = αAβ, ϕ2 = αγβ and A → γ is a rule in PG

• ϕ1 derives ϕ2, denoted by ϕ1

∗

=⇒G ϕ2,
if there exists a finite sequence of direct derivations such that
ϕ1 =⇒G ϕ′

1 =⇒G ϕ′

2 =⇒G ϕ′

3 =⇒G · · · =⇒G ϕ2

• ϕ1

i
=⇒G ϕ2 denotes that ϕ1 derives ϕ2 in exactly i derivation steps

• a rightmost derivation is a derivation in which at each step, the rightmost
non-terminal in the string is picked for expansion

• similarly for a leftmost derivation
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Context Free Languages (CFLs)

• Formal Definition: the language of a CFG G is defined as:
L(G) = {w ∈ T ∗| S

∗

=⇒G w}

• a language L is context-free if there exists a grammar G such that L = L(G)

• the set of all such languages is called the set of context-free languages (CFLs)

• two grammars G1 and G2 are called equivalent if L(G1) = L(G2)
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Parse Trees

• a Parse Tree is a graphical representation of a derivation

• the leaves (yield) of the tree correspond to a terminal string in L(G)

• the tree does not represent the derivation order of the non-terminals

• the tree does reflect the structure of the input string - what rules were used to
derive the various substrings of the input

• a parse tree constitutes a proof that a given input string is in L(G)

• a grammar G is called ambiguous if there exists a word w ∈ L(G) that has
two or more different parse trees

• There exist CFLs that are inherently ambiguous
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Pushdown Automata

• An extension of a FSA that is powerful enough to accept CFLs

• The FSA is augmented with a memory storage device in the form of a stack

• Formal Definition: a PDA M = (Q, Σ, Γ, δ, q0, Z0, F ) where:

– Q, Σ, q0, F are similar to those of a FSA

– Γ is a finite set of stack symbols

– Z0 is a start stack symbol

– δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ
∗

δ(q, σ, Z) = {(q1, γ1), (q2, γ2), ..., (qm, γm)}

• Note that a PDA is non-deterministic: it can make ε-moves on the input

• It can also: replace the top element of the stack, “push” an element onto the
stack, and “pop” an element from the stack
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Recognition and Parsing of CFLs

• the recognition problem:
given a grammar G and a word w, is w ∈ L(G)

• the parsing problem:
given a grammar G and a word w, if w ∈ L(G), find a parse tree (or all
possible parse trees) for w

• there exist a variety of algorithms for parsing CFLs and their variants
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Context Sensitive and Unrestricted Grammars

• CFGs are called context-free because the form of the grammar rules allows
them to be used in a derivation regardless of the context in which a
non-terminal appears

• there exist less restricted forms of grammars:

• Context Sensitive grammars are grammars where the rules have the form
α → β, with the restriction that |α| ≤ |β|

• in order to be applied in a derivation, the entire left-hand side of the rule must
match a substring of the current derived string

• Unrestricted grammars are grammars where the rules are unrestricted in
form - α → β, where α contains one or more grammar symbols, and β

contains zero or more grammar symbols

• more powerful computation devices are required in order to recognize the
languages defined by these types of grammars

12 11-722 Grammar Formalisms



The Chomsky Hierarchy

• Chomsky was one of the pioneers in identifying the correspondence between
the different types of grammars and the formal computational models that are
required to recognize them:

• Type-0 Grammars are unrestricted grammars, correspond to recursively
enumerable languages, require Turing Machines to recognize them

• Type-1 Grammars are context-sensitive grammars, correspond to
context-sensitive languages and require a type of automata called
linear-bounded automata to recognize them

• Type-2 Grammars are context-free grammars, correspond to CFLs and
require PDAs to recognize them

• Type-3 Grammars are regular grammars, correspond to regular languages
and require FSAs to recognize them

• The syntax of natural languages is often described by phrase structure rules
that are “extended” CFGs. Algorithms for parsing them are often based on
extensions of parsers for CFGs.
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Parsing Algorithms

• Clear distinction in all grammar formalisms:

– The Grammar: a declarative (usually generative) finite description of what
structures in the language are grammatical

– The Language: the (possibly infinite) set of all strings that are derivable according
to the grammar

– The Parser: an algorithm that for a given input, decides membership in the
language, and determines it’s structure according to the grammar

• In many grammar formalisms CFGs are basis for describing the constituent structure of
NL sentences

• Recognition vs. Parsing:

– Recognition - deciding the membership in the language:
For a given grammar G, an algorithm that given an input w decides: is w ∈ L(G)?

– Parsing - Recognition + producing a parse tree for w

• Is parsing more “difficult” than recognition? (time complexity)

• Ambiguity - a parse for w or all parses for w?

– Identifying the “correct” parse

– Ambiguity representation - an input may have exponentially many parses
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CFL Parsing Algorithms

Parsing General CFLs vs. Limited Forms

• Efficiency:

– Deterministic (LR) languages can be parsed in linear time

– A number of parsing algorithms for general CFLs require O(n3) time

– Asymptotically best parsing algorithm for general CFLs requires
O(n2.376), but is not practical

• Utility - why parse general grammars and not just CNF?

– Grammar intended to reflect actual structure of language

– Conversion to CNF completely destroys the parse structure

• Parsing Unification-based grammars is quite a different story...
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Top-Down vs. Bottom-Up Parsing

Top-Down Parsing:

• Construct the parse-tree starting from the root (“S”) of the grammar

• At each step, expand a non-terminal using one selected grammar rule

• match terminal nodes with the input

• backtrack when tree is inconsistent with input

• Advantage: only constructs partial trees that can be derived from the root “S”

• Problems: efficiency, handling ambiguity, left-recursion

Bottom-Up Parsing:

• Construct a parse starting from the input symbols

• Build constituents from sub-constituents

• When all constituents on the RHS of a rule are matched, create a constituent for the
LHS of the rule

• Advantage: only creates constituents that are consistent with the input

• Problems: efficiency, handling ambiguity
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Top-Down vs. Bottom-Up Parsing

• Various CFG parsing algorithms are a hybrid of Top-Down and Bottom-Up

• Attempt to combine the advantages of both

• A Chart allows storing partial analyses, so that they can be shared or
memorized

• Ambiguity Packing allows efficient storage of ambiguous analyses
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The Earley Parsing Algorithm

General Principles:

• A clever hybrid Bottom-Up and Top-Down approach

• Bottom-Up parsing completely guided by Top-Down predictions

• Maintains sets of “dotted” grammar rules that:

– Reflect what the parser has “seen” so far

– Explicitly predict the rules and constituents that will combine into a
complete parse

• Time Complexity O(n3), but better on particular sub-classes

• First efficient parsing algorithm for general context-free grammars.
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The Earley Parsing Method

• Main Data Structure: The “state” (or “item”)

• A state is a “dotted” rule and starting position:
[A → X1... • C...Xm, pi]

• The algorithm maintains sets of states, one set for each position in the input
string (starting from 0)

• We denote the set of states for position i by Si
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The Earley Parsing Algorithm

Three Main Operations:

• Predictor: If state [A → X1... • C...Xm, j] ∈ Si then for every rule of the
form C → Y1...Yk, add to Si the state [C → •Y1...Yk, i]

• Completer: If state [A → X1...Xm•, j] ∈ Si then for every state in Sj of
form [B → X1... • A...Xk, l], add to Si the state [B → X1...A • ...Xk, l]

• Scanner: If state [A → X1... • a...Xm, j] ∈ Si and the next input word is
xi+1 = a, then add to Si+1 the state [A → X1...a • ...Xm, j]
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The Earley Recognition Algorithm

• Simplified version with no lookaheads and for grammars without
epsilon-rules

• Assumes input is string of grammar terminal symbols

• We extend the grammar with a new rule S ′ → S $

• The algorithm sequentially constructs the sets Si for 0 ≤ i ≤ n + 1

• We initialize the set S0 with S0 = {[S′ → •S $, 0]}
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The Earley Recognition Algorithm

The Main Algorithm: parsing input x = x1...xn

1. S0 = {[S′ → •S $, 0]}

2. For 0 ≤ i ≤ n do:
Process each item s ∈ Si in order by applying to it the single applicable
operation among:

(a) Predictor (adds new items to Si)

(b) Completer (adds new items to Si)

(c) Scanner (adds new items to Si+1)

3. If Si+1 = φ, Reject the input

4. If i = n and Sn+1 = {[S′ → S $•, 0]} then Accept the input
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Parsing with an Earley Parser

• We need to keep back-pointers to the constituents that we combine together
when we complete a rule

• Each item must be extended to have the form [A → X1(pt1)... • C...Xm, j],
where the pti are “pointers” to the already found RHS sub-constituents

• the constituents and the pointers can be created during Scanner and
Completer

• At the end - reconstruct parse from the “back-pointers”

23 11-722 Grammar Formalisms



Efficient Representation of Ambiguities

• a Local Ambiguity - multiple ways to derive the same substring from a
non-terminal A

• What do local ambiguities look like with Earley Parsing?

– Multiple items in the constituent chart of the form
[A → X1(pt1)...Xm(ptm)](pk, pj), with the same A, pj and pk.

• Local Ambiguity Packing: create a single item in the Chart for A(pj , pk),
with pointers to the various possible derivations.

• A(pj , pk) can then be a sufficient “back-pointer” in the chart

• Allows to efficiently represent a very large number of ambiguities (even
exponentially many)

• Unpacking - producing one or more of the packed parse trees by following
the back-pointers.
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Time Complexity of Earley Algorithm

• Algorithm iterates for each word of input (i.e. n iterations)

• How many items can be created and processed in Si?

– Each item in Si has the form [A → X1... • C...Xm, j], 0 ≤ j ≤ i

– Thus O(n) items

• The Scanner and Predictor operations on an item each require constant time

• The Completer operation on an item adds items of form
[B → X1...A • ...Xk, l] to Si, with 0 ≤ l ≤ i, so it may require up to O(n)

time for each processed item

• Time required for each iteration (Si) is thus O(n2)

• Time bound on entire algorithm is therefore O(n3)
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Time Complexity of Earley Algorithm

Special Cases:

• Completer is the operation that may require O(i2) time in iteration i

• For unambiguous grammars, Earley shows that the completer operation will
require at most O(i) time

• Thus time complexity for unambiguous grammars is O(n2)

• For some grammars, the number of items in each Si is bounded by a constant

• These are called bounded-state grammars and include even some ambiguious
grammars.

• For bounded-state grammars, the time complexity of the algorithm is linear -
O(n)
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Earley Parsing - Example

The Grammar:

(1) S → NP V P

(2) NP → art adj n

(3) NP → art n

(4) NP → adj n

(5) V P → aux V P

(6) V P → v NP

The original input: “ x = The large can can hold the water”
POS assigned input: “ x = art adj n aux v art n”
Parser input: “ x = art adj n aux v art n $”
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S0: [S′ → •S $ , 0]

[S → •NP V P , 0]

[NP → •art adj n , 0]

[NP → •art n , 0]

[NP → •adj n , 0]

S1: [NP → art1 • adj n , 0] 1 art (0,1)
[NP → art1 • n , 0]
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S1: [NP → art1 • adj n , 0]

[NP → art1 • n , 0]

S2: [NP → art1 adj2 • n , 0] 2 adj (1,2)
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S2: [NP → art1 adj2 • n , 0]

S3: [NP4 → art1 adj2 n3 • , 0] 3 n (2,3)
4 NP → art1 adj2 n3 (0,3)
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S3: [NP4 → art1 adj2 n3 • , 0]

[S → NP4 • V P , 0]

[V P → •aux V P , 3]

[V P → •v NP , 3]

S4: [V P → aux5 • V P , 3] 5 aux (3,4)
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S4: [V P → aux5 • V P , 3]

[V P → •aux V P , 4]

[V P → •v NP , 4]

S5: [V P → v6 • NP , 4] 6 v (4,5)
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S5: [V P → v6 • NP , 4]

[NP → •art adj n , 5]

[NP → •art n , 5]

[NP → •adj n , 5]

S6: [NP → art7 • adj n , 5] 7 art (5,6)
[NP → art7 • n , 5]
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S6: [NP → art7 • adj n , 5]

[NP → art7 • n , 5]

S7: [NP9 → art7 n8 • , 5] 8 n (6,7)
9 NP → art7 n8 (5,7)
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Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S7: [NP9 → art7 n8 • , 5]

[V P10 → v6 NP9 • , 4] 10 V P → v6 NP9 (4,7)
[V P11 → aux5 V P10 • , 3] 11 V P → aux5 V P10 (3,7)
[S12 → NP4 V P11 • , 0] 12 S → NP4 V P11 (0,7)
[S′ → S • $ , 0]

S8: [S′ → S $ • , 0]
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Augmenting CFGs with Features

• Certain linguistic constraints are not naturally described via CFGs

• Example: Number Agreement between constituents - “a boys”

• Possible to describe using refined CF rules:

NP-Sing --> ART-Sing N-Sing

NP-Plu --> ART-Plu N-Plu

• Much more natural to describe via a single feature-augmented CF rule:

NP --> ART N

((x1 number = x2 number))

• Describing a large set of such feature constraints using only CF rules is not
practical
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Feature Structures

• Constituents can be viewed as structures (collections) of features that have
assigned values

• Features can be shared between constituents

• Linguistic constraints express rules about how the feature-structure of a
constituent is formed from its sub-constituents

• Some basic features for English:

– Number, Gender and Person agreement

– Verb form features and sub-categorizations

• Complex Feature Structures: Feature values can themselves be feature
structures
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Unification of Feature Structures

• Unification Grammars (such as HPSG) establish a complete linguistic theory
for a language via a set of relationships between feature structures of
constituents

• Key concept - subsumption relationship between two FSs:
F1 subsumes F2 if every feature-value pair in F1 is also in F2

• Two FSs F1 and F2 unify if there exists a FS F that both F1 and F2 subsume.

• The Most General Unifier is the minimal FS F that both F1 and F2 subsume.

• The Unification operation allows easy expression of grammatical
relationships among constituent feature structures
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Unification of Feature Structures

Example:

• F1 subsumes F2:

F1 = ((cat *v)) F2 = ((cat *v)

(root *cry))

• F3 is MGU of F1 and F2:

F1 = ((cat *v) F2 = ((cat *v) F3 = ((cat *v)

(root *cry)) (vform *pres)) (root *cry)

(vform *pres))

• F1 and F2 do not unify:

F1 = ((cat *v) F2 = ((cat *v)

(agr *3s)) (agr *3p))
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Unification-based Grammars

• Grammar rules can be completely specified using unification

• Example:

X0 --> X1 X2

((x0 cat = S)

(x1 cat = NP)

(x2 cat = VP)

(x1 agr = x2 agr)

(x0 subj = X1))

• If a feature (such as cat) is always specified, it can be associated with the
non-terminal of a CFG rule

• Example:

S --> NP VP

((x1 agr = x2 agr)

(x0 subj = x1))
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Unification-based Grammars

Example:

• The grammar rule:

NP --> ART N

(((x1 agr) = (x2 agr))

((x0 spec) = (x1 spec))

(x0 = x2))

• The Feature Structures:

ART: ((agr *3s,*3p) N: ((agr *3s) NP:((agr *3s)

(root *the) (root *boy)) (spec *def)

(spec *def)) (root *boy))
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CFG Parsing with Feature Unification

• Back-bone CFG is augmented with a functional description that describes
unification constraints between grammar constituents

• The FS corresponding to the “root” of the grammar is constructed
compositionally during parsing

• This is called Interleaved Unification

• Other approaches are also possible
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Unification Augmented Earley Parsing

• CFG is augmented with unification equations

• During parse time - the parser maintains a FS associated with each
constituent in the chart

• Whenever COMPLETER applies (for rule i) - the unification operations
associated with rule i are applied to the given FSs of the RHS constituents

• If unification succeeds, the FS associated with the LHS constituent of the rule
is returned and attached to the new constituent created for the LHS of the rule.

• If the unification function fails - the rule completion “fails” - LHS constituent
is not created
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Ambiguity Packing and Unification Grammars

• Complex interaction between ambiguity detection and packing and
unification

• Unification creates non-local chains of dependencies

• Pure unification grammars cannot always be parsed efficiently

• in unification-augmented CFG parsing with interleaved unification:

– Unification can interfere with efficient ambiguity packing

– f-structures must also be efficiently represented and packed

– Parsing algorithms can be optimized to achieve maximal ambiguity
packing [Lavie and Rose 2000]

• Strategies other than interleaved unification are possible:

– Compute packed c-structure first, then solve unification constraints

– multi-pass strategies for computing c-structure and f-structure can
improve parsing efficiency [Placeway 2002]

– In some pure unification grammars, subsumption can replace ambiguity
packing
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