
11-722: Grammar Formalisms

Parsing Overview

Alon Lavie

January 23, 2006

References:
Hopcroft and Ullman, “Introduction to Automata Theory, Languages and Computation”.
James Allen, “Natural Language Understanding”, 2nd edition.
Jurafsky and Martin, “Speech and Language Processing”.

Formal Languages

• A mathematical abstraction of real languages: Natural Languages and
Computer Languages

• A language is no more than a set of items called words (the equivalent of
sentences in a natural language)

• Languages can be defined declaratively, descriptively or computationally

• Formal Language Theory: The study of properties of the various types and
classes of languages using formal mathematical proofs

• Fundamental problem - word membership:
Given a word w and a language L - is w ∈ L?

• what algorithm or computational device is necessary to answer this question
depends on the class of the language

1 11-722 Grammar Formalisms

Basic Definitions

• Σ: the alphabet - a finite (non-empty) set of atomic symbols

– each symbol σ in the set is a letter
– letters are denoted by lower case Latin letters a, b, c,...

• a word is a string of letters from a given alphabet Σ

• |w| denotes the length of word w

• ε denotes the empty word: |ε| = 0

• we only consider words of finite length

• Def: a language L is a set (finite or infinite) of words constructed from a given alphabet
Σ

• Examples: L1 = {ε} L2 = Ø L3 = {anbn|n ≥ 0 }

• Set Theory and operations apply to formal languages:

– union, intersection, complementation, membership

– L = {w ∈ Σ∗|w 6∈ L}

• Important notation:
Σ
∗

= set of all finite words over the alphabet Σ

Σ
i
= set of all words of length i over the alphabet Σ

2 11-722 Grammar Formalisms

Language Classes

• Sets of formal languages that can be defined using a particular descriptive
definition or abstraction of a computational framework

• Examples:

– The set of languages that can be described by Regular Expressions

– The set of languages for which we can construct a Finite State Automaton

– The set of languages that can be defined using a Context-free Grammar

• Knowing the class to which a language belongs will allow us to develop
efficient algorithms for processing the language or deciding membership in
the language

3 11-722 Grammar Formalisms

Deterministic FSA

• Formal Definition of a DFSA: A = (Q, Σ, δ, q0, F) where:

– Q is a finite set of states

– Σ is a finite alphabet

– q0 ∈ Q is an initial (start) state

– F ⊆ Q is a set of final states

– δ : Q × Σ → Q is the complete transition function

• The language accepted by a DFSA A is defined to be:
L(A) = {w ∈ Σ∗| after computing on w, A is in a state q ∈ F}

• based on the function δ, we define δ̂, the function on words that models the computation
of a DFSA recursively as follows:

– δ̂ : Q × Σ∗ → Q

– δ̂(q, ε) = q ∀q ∈ Q

– δ̂(q, xσ) = δ(δ̂(q, x), σ)

• Formal definition of L(A): L(A) = {w ∈ Σ∗| δ̂(q0, w) ∈ F}

• Def: Regular Language: a language L ⊆ Σ∗ is called regular if there exists some
DFSA A such that L = L(A)

• Examples of regular languages: L = Σ∗ L = {ε} L = (aab)∗

4 11-722 Grammar Formalisms

Context-Free Grammars

• A descriptive generative formalism for specifying the set of words in a
language using production rules

• Formal Definition: a context-free grammar G = (V, T, P, S)

– V is a finite set of variables

– T is a finite set of terminal symbols (similar to Σ for FSAs)

– P is a set of context-free production rules, each of the form
A → α, where α ∈ (V ∪ T)∗

– S is a start non-terminal (S ∈ V)

• Notations:

– we denote elements of V by S, A, B, C...

– we denote elements of T by a, b, c...

– we denote strings over T ∗ by w, x, y...

– we denote strings over (T ∪ V)∗ by α, β, γ...

– we denote single variables or terminals by X, Y, Z...

5 11-722 Grammar Formalisms

Context-Free Grammars

• Example: L = {anbn| n ≥ 1}

G: S --> a S b

S --> a b

• in this case the language L(G) could be specified in a succinct mathematical
form - often this is difficult or not possible

6 11-722 Grammar Formalisms

CFG Derivations

• derivations describe the process of using the context-free rules to derive a
string of terminal symbols

• Definition: let ϕ1, ϕ2 ∈ (V ∪ T)∗.
ϕ1 directly derives ϕ2, denoted by: ϕ1 =⇒G ϕ2,
if ϕ1 = αAβ, ϕ2 = αγβ and A → γ is a rule in PG

• ϕ1 derives ϕ2, denoted by ϕ1

∗

=⇒G ϕ2,
if there exists a finite sequence of direct derivations such that
ϕ1 =⇒G ϕ′

1 =⇒G ϕ′

2 =⇒G ϕ′

3 =⇒G · · · =⇒G ϕ2

• ϕ1

i
=⇒G ϕ2 denotes that ϕ1 derives ϕ2 in exactly i derivation steps

• a rightmost derivation is a derivation in which at each step, the rightmost
non-terminal in the string is picked for expansion

• similarly for a leftmost derivation

7 11-722 Grammar Formalisms

Context Free Languages (CFLs)

• Formal Definition: the language of a CFG G is defined as:
L(G) = {w ∈ T ∗| S

∗

=⇒G w}

• a language L is context-free if there exists a grammar G such that L = L(G)

• the set of all such languages is called the set of context-free languages (CFLs)

• two grammars G1 and G2 are called equivalent if L(G1) = L(G2)

8 11-722 Grammar Formalisms

Parse Trees

• a Parse Tree is a graphical representation of a derivation

• the leaves (yield) of the tree correspond to a terminal string in L(G)

• the tree does not represent the derivation order of the non-terminals

• the tree does reflect the structure of the input string - what rules were used to
derive the various substrings of the input

• a parse tree constitutes a proof that a given input string is in L(G)

• a grammar G is called ambiguous if there exists a word w ∈ L(G) that has
two or more different parse trees

• There exist CFLs that are inherently ambiguous

9 11-722 Grammar Formalisms

Pushdown Automata

• An extension of a FSA that is powerful enough to accept CFLs

• The FSA is augmented with a memory storage device in the form of a stack

• Formal Definition: a PDA M = (Q, Σ, Γ, δ, q0, Z0, F) where:

– Q, Σ, q0, F are similar to those of a FSA

– Γ is a finite set of stack symbols

– Z0 is a start stack symbol

– δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ
∗

δ(q, σ, Z) = {(q1, γ1), (q2, γ2), ..., (qm, γm)}

• Note that a PDA is non-deterministic: it can make ε-moves on the input

• It can also: replace the top element of the stack, “push” an element onto the
stack, and “pop” an element from the stack

10 11-722 Grammar Formalisms

Recognition and Parsing of CFLs

• the recognition problem:
given a grammar G and a word w, is w ∈ L(G)

• the parsing problem:
given a grammar G and a word w, if w ∈ L(G), find a parse tree (or all
possible parse trees) for w

• there exist a variety of algorithms for parsing CFLs and their variants

11 11-722 Grammar Formalisms

Context Sensitive and Unrestricted Grammars

• CFGs are called context-free because the form of the grammar rules allows
them to be used in a derivation regardless of the context in which a
non-terminal appears

• there exist less restricted forms of grammars:

• Context Sensitive grammars are grammars where the rules have the form
α → β, with the restriction that |α| ≤ |β|

• in order to be applied in a derivation, the entire left-hand side of the rule must
match a substring of the current derived string

• Unrestricted grammars are grammars where the rules are unrestricted in
form - α → β, where α contains one or more grammar symbols, and β

contains zero or more grammar symbols

• more powerful computation devices are required in order to recognize the
languages defined by these types of grammars

12 11-722 Grammar Formalisms

The Chomsky Hierarchy

• Chomsky was one of the pioneers in identifying the correspondence between
the different types of grammars and the formal computational models that are
required to recognize them:

• Type-0 Grammars are unrestricted grammars, correspond to recursively
enumerable languages, require Turing Machines to recognize them

• Type-1 Grammars are context-sensitive grammars, correspond to
context-sensitive languages and require a type of automata called
linear-bounded automata to recognize them

• Type-2 Grammars are context-free grammars, correspond to CFLs and
require PDAs to recognize them

• Type-3 Grammars are regular grammars, correspond to regular languages
and require FSAs to recognize them

• The syntax of natural languages is often described by phrase structure rules
that are “extended” CFGs. Algorithms for parsing them are often based on
extensions of parsers for CFGs.

13 11-722 Grammar Formalisms

Parsing Algorithms

• Clear distinction in all grammar formalisms:

– The Grammar: a declarative (usually generative) finite description of what
structures in the language are grammatical

– The Language: the (possibly infinite) set of all strings that are derivable according
to the grammar

– The Parser: an algorithm that for a given input, decides membership in the
language, and determines it’s structure according to the grammar

• In many grammar formalisms CFGs are basis for describing the constituent structure of
NL sentences

• Recognition vs. Parsing:

– Recognition - deciding the membership in the language:
For a given grammar G, an algorithm that given an input w decides: is w ∈ L(G)?

– Parsing - Recognition + producing a parse tree for w

• Is parsing more “difficult” than recognition? (time complexity)

• Ambiguity - a parse for w or all parses for w?

– Identifying the “correct” parse

– Ambiguity representation - an input may have exponentially many parses

14 11-722 Grammar Formalisms

CFL Parsing Algorithms

Parsing General CFLs vs. Limited Forms

• Efficiency:

– Deterministic (LR) languages can be parsed in linear time

– A number of parsing algorithms for general CFLs require O(n3) time

– Asymptotically best parsing algorithm for general CFLs requires
O(n2.376), but is not practical

• Utility - why parse general grammars and not just CNF?

– Grammar intended to reflect actual structure of language

– Conversion to CNF completely destroys the parse structure

• Parsing Unification-based grammars is quite a different story...

15 11-722 Grammar Formalisms

Top-Down vs. Bottom-Up Parsing

Top-Down Parsing:

• Construct the parse-tree starting from the root (“S”) of the grammar

• At each step, expand a non-terminal using one selected grammar rule

• match terminal nodes with the input

• backtrack when tree is inconsistent with input

• Advantage: only constructs partial trees that can be derived from the root “S”

• Problems: efficiency, handling ambiguity, left-recursion

Bottom-Up Parsing:

• Construct a parse starting from the input symbols

• Build constituents from sub-constituents

• When all constituents on the RHS of a rule are matched, create a constituent for the
LHS of the rule

• Advantage: only creates constituents that are consistent with the input

• Problems: efficiency, handling ambiguity

16 11-722 Grammar Formalisms

Top-Down vs. Bottom-Up Parsing

• Various CFG parsing algorithms are a hybrid of Top-Down and Bottom-Up

• Attempt to combine the advantages of both

• A Chart allows storing partial analyses, so that they can be shared or
memorized

• Ambiguity Packing allows efficient storage of ambiguous analyses

17 11-722 Grammar Formalisms

The Earley Parsing Algorithm

General Principles:

• A clever hybrid Bottom-Up and Top-Down approach

• Bottom-Up parsing completely guided by Top-Down predictions

• Maintains sets of “dotted” grammar rules that:

– Reflect what the parser has “seen” so far

– Explicitly predict the rules and constituents that will combine into a
complete parse

• Time Complexity O(n3), but better on particular sub-classes

• First efficient parsing algorithm for general context-free grammars.

18 11-722 Grammar Formalisms

The Earley Parsing Method

• Main Data Structure: The “state” (or “item”)

• A state is a “dotted” rule and starting position:
[A → X1... • C...Xm, pi]

• The algorithm maintains sets of states, one set for each position in the input
string (starting from 0)

• We denote the set of states for position i by Si

19 11-722 Grammar Formalisms

The Earley Parsing Algorithm

Three Main Operations:

• Predictor: If state [A → X1... • C...Xm, j] ∈ Si then for every rule of the
form C → Y1...Yk, add to Si the state [C → •Y1...Yk, i]

• Completer: If state [A → X1...Xm•, j] ∈ Si then for every state in Sj of
form [B → X1... • A...Xk, l], add to Si the state [B → X1...A • ...Xk, l]

• Scanner: If state [A → X1... • a...Xm, j] ∈ Si and the next input word is
xi+1 = a, then add to Si+1 the state [A → X1...a • ...Xm, j]

20 11-722 Grammar Formalisms

The Earley Recognition Algorithm

• Simplified version with no lookaheads and for grammars without
epsilon-rules

• Assumes input is string of grammar terminal symbols

• We extend the grammar with a new rule S ′ → S $

• The algorithm sequentially constructs the sets Si for 0 ≤ i ≤ n + 1

• We initialize the set S0 with S0 = {[S′ → •S $, 0]}

21 11-722 Grammar Formalisms

The Earley Recognition Algorithm

The Main Algorithm: parsing input x = x1...xn

1. S0 = {[S′ → •S $, 0]}

2. For 0 ≤ i ≤ n do:
Process each item s ∈ Si in order by applying to it the single applicable
operation among:

(a) Predictor (adds new items to Si)

(b) Completer (adds new items to Si)

(c) Scanner (adds new items to Si+1)

3. If Si+1 = φ, Reject the input

4. If i = n and Sn+1 = {[S′ → S $•, 0]} then Accept the input

22 11-722 Grammar Formalisms

Parsing with an Earley Parser

• We need to keep back-pointers to the constituents that we combine together
when we complete a rule

• Each item must be extended to have the form [A → X1(pt1)... • C...Xm, j],
where the pti are “pointers” to the already found RHS sub-constituents

• the constituents and the pointers can be created during Scanner and
Completer

• At the end - reconstruct parse from the “back-pointers”

23 11-722 Grammar Formalisms

Efficient Representation of Ambiguities

• a Local Ambiguity - multiple ways to derive the same substring from a
non-terminal A

• What do local ambiguities look like with Earley Parsing?

– Multiple items in the constituent chart of the form
[A → X1(pt1)...Xm(ptm)](pk, pj), with the same A, pj and pk.

• Local Ambiguity Packing: create a single item in the Chart for A(pj , pk),
with pointers to the various possible derivations.

• A(pj , pk) can then be a sufficient “back-pointer” in the chart

• Allows to efficiently represent a very large number of ambiguities (even
exponentially many)

• Unpacking - producing one or more of the packed parse trees by following
the back-pointers.

24 11-722 Grammar Formalisms

Time Complexity of Earley Algorithm

• Algorithm iterates for each word of input (i.e. n iterations)

• How many items can be created and processed in Si?

– Each item in Si has the form [A → X1... • C...Xm, j], 0 ≤ j ≤ i

– Thus O(n) items

• The Scanner and Predictor operations on an item each require constant time

• The Completer operation on an item adds items of form
[B → X1...A • ...Xk, l] to Si, with 0 ≤ l ≤ i, so it may require up to O(n)

time for each processed item

• Time required for each iteration (Si) is thus O(n2)

• Time bound on entire algorithm is therefore O(n3)

25 11-722 Grammar Formalisms

Time Complexity of Earley Algorithm

Special Cases:

• Completer is the operation that may require O(i2) time in iteration i

• For unambiguous grammars, Earley shows that the completer operation will
require at most O(i) time

• Thus time complexity for unambiguous grammars is O(n2)

• For some grammars, the number of items in each Si is bounded by a constant

• These are called bounded-state grammars and include even some ambiguious
grammars.

• For bounded-state grammars, the time complexity of the algorithm is linear -
O(n)

26 11-722 Grammar Formalisms

Earley Parsing - Example

The Grammar:

(1) S → NP V P

(2) NP → art adj n

(3) NP → art n

(4) NP → adj n

(5) V P → aux V P

(6) V P → v NP

The original input: “ x = The large can can hold the water”
POS assigned input: “ x = art adj n aux v art n”
Parser input: “ x = art adj n aux v art n $”

27 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

28 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S0: [S′ → •S $, 0]

[S → •NP V P , 0]

[NP → •art adj n , 0]

[NP → •art n , 0]

[NP → •adj n , 0]

S1: [NP → art1 • adj n , 0] 1 art (0,1)
[NP → art1 • n , 0]

29 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S1: [NP → art1 • adj n , 0]

[NP → art1 • n , 0]

S2: [NP → art1 adj2 • n , 0] 2 adj (1,2)

30 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S2: [NP → art1 adj2 • n , 0]

S3: [NP4 → art1 adj2 n3 • , 0] 3 n (2,3)
4 NP → art1 adj2 n3 (0,3)

31 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S3: [NP4 → art1 adj2 n3 • , 0]

[S → NP4 • V P , 0]

[V P → •aux V P , 3]

[V P → •v NP , 3]

S4: [V P → aux5 • V P , 3] 5 aux (3,4)

32 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S4: [V P → aux5 • V P , 3]

[V P → •aux V P , 4]

[V P → •v NP , 4]

S5: [V P → v6 • NP , 4] 6 v (4,5)

33 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S5: [V P → v6 • NP , 4]

[NP → •art adj n , 5]

[NP → •art n , 5]

[NP → •adj n , 5]

S6: [NP → art7 • adj n , 5] 7 art (5,6)
[NP → art7 • n , 5]

34 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S6: [NP → art7 • adj n , 5]

[NP → art7 • n , 5]

S7: [NP9 → art7 n8 • , 5] 8 n (6,7)
9 NP → art7 n8 (5,7)

35 11-722 Grammar Formalisms

Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S7: [NP9 → art7 n8 • , 5]

[V P10 → v6 NP9 • , 4] 10 V P → v6 NP9 (4,7)
[V P11 → aux5 V P10 • , 3] 11 V P → aux5 V P10 (3,7)
[S12 → NP4 V P11 • , 0] 12 S → NP4 V P11 (0,7)
[S′ → S • $, 0]

S8: [S′ → S $ • , 0]

36 11-722 Grammar Formalisms

Augmenting CFGs with Features

• Certain linguistic constraints are not naturally described via CFGs

• Example: Number Agreement between constituents - “a boys”

• Possible to describe using refined CF rules:

NP-Sing --> ART-Sing N-Sing

NP-Plu --> ART-Plu N-Plu

• Much more natural to describe via a single feature-augmented CF rule:

NP --> ART N

((x1 number = x2 number))

• Describing a large set of such feature constraints using only CF rules is not
practical

37 11-722 Grammar Formalisms

Feature Structures

• Constituents can be viewed as structures (collections) of features that have
assigned values

• Features can be shared between constituents

• Linguistic constraints express rules about how the feature-structure of a
constituent is formed from its sub-constituents

• Some basic features for English:

– Number, Gender and Person agreement

– Verb form features and sub-categorizations

• Complex Feature Structures: Feature values can themselves be feature
structures

38 11-722 Grammar Formalisms

Unification of Feature Structures

• Unification Grammars (such as HPSG) establish a complete linguistic theory
for a language via a set of relationships between feature structures of
constituents

• Key concept - subsumption relationship between two FSs:
F1 subsumes F2 if every feature-value pair in F1 is also in F2

• Two FSs F1 and F2 unify if there exists a FS F that both F1 and F2 subsume.

• The Most General Unifier is the minimal FS F that both F1 and F2 subsume.

• The Unification operation allows easy expression of grammatical
relationships among constituent feature structures

39 11-722 Grammar Formalisms

Unification of Feature Structures

Example:

• F1 subsumes F2:

F1 = ((cat *v)) F2 = ((cat *v)

(root *cry))

• F3 is MGU of F1 and F2:

F1 = ((cat *v) F2 = ((cat *v) F3 = ((cat *v)

(root *cry)) (vform *pres)) (root *cry)

(vform *pres))

• F1 and F2 do not unify:

F1 = ((cat *v) F2 = ((cat *v)

(agr *3s)) (agr *3p))

40 11-722 Grammar Formalisms

Unification-based Grammars

• Grammar rules can be completely specified using unification

• Example:

X0 --> X1 X2

((x0 cat = S)

(x1 cat = NP)

(x2 cat = VP)

(x1 agr = x2 agr)

(x0 subj = X1))

• If a feature (such as cat) is always specified, it can be associated with the
non-terminal of a CFG rule

• Example:

S --> NP VP

((x1 agr = x2 agr)

(x0 subj = x1))

41 11-722 Grammar Formalisms

Unification-based Grammars

Example:

• The grammar rule:

NP --> ART N

(((x1 agr) = (x2 agr))

((x0 spec) = (x1 spec))

(x0 = x2))

• The Feature Structures:

ART: ((agr *3s,*3p) N: ((agr *3s) NP:((agr *3s)

(root *the) (root *boy)) (spec *def)

(spec *def)) (root *boy))

42 11-722 Grammar Formalisms

CFG Parsing with Feature Unification

• Back-bone CFG is augmented with a functional description that describes
unification constraints between grammar constituents

• The FS corresponding to the “root” of the grammar is constructed
compositionally during parsing

• This is called Interleaved Unification

• Other approaches are also possible

43 11-722 Grammar Formalisms

Unification Augmented Earley Parsing

• CFG is augmented with unification equations

• During parse time - the parser maintains a FS associated with each
constituent in the chart

• Whenever COMPLETER applies (for rule i) - the unification operations
associated with rule i are applied to the given FSs of the RHS constituents

• If unification succeeds, the FS associated with the LHS constituent of the rule
is returned and attached to the new constituent created for the LHS of the rule.

• If the unification function fails - the rule completion “fails” - LHS constituent
is not created

44 11-722 Grammar Formalisms

Ambiguity Packing and Unification Grammars

• Complex interaction between ambiguity detection and packing and
unification

• Unification creates non-local chains of dependencies

• Pure unification grammars cannot always be parsed efficiently

• in unification-augmented CFG parsing with interleaved unification:

– Unification can interfere with efficient ambiguity packing

– f-structures must also be efficiently represented and packed

– Parsing algorithms can be optimized to achieve maximal ambiguity
packing [Lavie and Rose 2000]

• Strategies other than interleaved unification are possible:

– Compute packed c-structure first, then solve unification constraints

– multi-pass strategies for computing c-structure and f-structure can
improve parsing efficiency [Placeway 2002]

– In some pure unification grammars, subsumption can replace ambiguity
packing

45 11-722 Grammar Formalisms

