Expressivity of Unification Grammars

Shuly Wintner
Department of Computer Science
University of Haifa
Haifa, Israel
shuly@cs.haifa.ac.il

LTI CMU, May 2006

Shuly Wintner Unification Grammars

Basic notions

® A signature consisting of finite, non-empty sets FEATS of
features and ATOMS of atoms

o Attribute-value matrices (AVMs) used to depict feature
structures, which are sets of (feature, value) pairs

@ Reentrancy tags (or variables) are used to indicate co-indexing

@ Multi-AVMs are sequences of AVMs with possible reentrancies
among different members of the sequence.

® A grammar is a set of production rules, each of which is a
multi-AVM, and a lexicon which associates a set of AVMs
with each word.

Shuly Wintner Unification Grammars

Basic notions

Example: Lexicon

[caT: n
lamb — |NUM: sg
[CASE @[]
[CAT : v
CAT: n
love — |SUBCAT: 3)
CASE : acc
[NUM : pl
[CAT : v
give — |SUBCAT: GAT - np [cAT : np])
' CASE : acc|’ '
[NUM : pl

Shuly Wintner Unification Grammars

Basic notions

Example: Grammar rules

CAT: np CAT : v

[cAT :] — |NUM: NUM :

|CASE : nom SUBCAT : elist

CAT: np Teian -
NUM : — NUM'_
CASE : - '

Shuly Wintner Unification Grammars

Expressiveness of unification grammars

@ Just how expressive are unification grammars?

@ What is the class of languages generated by unification
grammars?

Shuly Wintner Unification Grammars

Trans-context-free languages

@ A grammar, G,p, for the language L = {a"b"c" | n > 0}.

@ Feature structures will have two features: CAT, which stands
for category, and T, which “counts” the length of sequences
of a-s, b-s and c-s.

@ The “category” is ap for strings of a-s, bp for b-s and cp for
c-s. The categories at, bt and ct are pre-terminal categories
of the words a, b and c, respectively.

@ “Counting” is done in unary base: a string of length n is
derived by an AVM (that is, an multi-AVM of length 1) whose
depth is n.

@ For example, the string bbb is derived by the following AVM:

CAT : bp
T : [T: [T: end]]

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: A unification grammar for the language {a"b"c" | n > 0}

The signature of the grammar consists in the features CAT and T and
the atoms s, ap, bp, cp, at, bt, ct and end. The terminal symbols
are, of course, a, b and c. The start symbol is the left-hand side of
the first rule.

. _ CAT: ap| [caT: bp|] [caT: cp
e -l B A

T: [1]] T:
- [car: ap _ [caT: ap
P2 [T : - } — [car: at] o]
CAT: ap
03 [T : o d] — [car: at]

Shuly Wintner Unification Grammars

Example: (continued)

e [] oo [
ps EA:T: :ﬁ d] — [cAT: bt
o] < e [
m W e e e

Shuly Wintner Unification Grammars

Example: (continued)

[caT: at] — a
[CAT: bt] — b

[cAaT: ct] — ¢

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: Derivation sequence of a®b?c?

Start with a form that consists of the start symbol,
0o = [CAT : 5] .

Only one rule, p1, can be applied to the single element of the multi-
AVM in oy, yielding:

o — CAT: ap CAT : bp CAT: cp
1=t T: T:

Shuly Wintner Unification Grammars

Example: (continued)

Applying py to the first element of o7y:

CAT : ap:| |:CAT: bp CAT: cp

oy = [car: at] {T:

Choose the third element in g5 and apply the rule py:

o3 = [cAT: at] {CAT; ap} [oaT: bt {CAT: bp:| |:CAT:

[

Apply ps to the fifth element of o3:

[

o4 = [CAT: at] {CAT: ap} [caT: bt] {CAT: bp} [caT :

T: T:

S Eal R

Shuly Wintner Unification Grammars

Example: (continued)

The second element of g4 is unifiable with the heads of both p> and
p3. We choose to apply ps:

o5 = [cAT: at] [car: at] [car: bt] {CAT: bp} [car: ct] {:

¢ end

In the same way we can now apply ps and p7 and obtain, eventually,

o7 = [car: at] J[car: at| [caT: bt] [car: bt] [car: ct] [

Now, let w = aabbcc; then o7 is a member of PT,,(1,6); in fact, it

CAT :

is the only member of the preterminal set. Therefore, w € L(G_pc).

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: Derivation tree of a®b?c?

Shuly Wintner

Unification Grammars

[car:

CAT : cp
T:[T: end]
CAT : cp
T : end
ct} [CAT 8 ct}
c

]

The repetition language

Example: A unification grammar for {ww | w € {a, b} T}

The signature of the grammar consists in the features CAT, FIRST
and REST and the atoms s, ap, bp, at, bt and elist. The terminal
symbols are a and b. The start symbol is the left-hand side of the
first rule.

[FIRST: [FIRST:

[CAT: S] REST : REST :

Shuly Wintner Unification Grammars

Example:

[FIRST : ap |
REsT ;| ol — [car: at] {FIR‘ST" }
' REST : REST :

[FIRST: bp .
FIRST : ~ [ear: bt] { : }

REST : R
REST :

[FIRST :
RST : ap — [car: at]
| REST : elist

[FIRST : bp I
| REST : elist €
[car: at] 2

[cAT : bt] - b

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

@ Unification grammars can simulate the operation of Turing
machines.

@ The membership problem for unification grammars is as hard
as the halting problem.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

A (deterministic) Turing machine (Q, X,b,d,s, h) is a tuple such
that:

o Q@ is a finite set of states

@ X is an alphabet, not containing the symbols L, R and elist
b € X is the blank symbol

s € Q is the initial state

h € Q is the final state

J:(Q\{h}) xX — Q x (XU{L, R}) is a total function
specifying transitions.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

@ A configuration of a Turing machine consists of the state, the
contents of the tape and the position of the head on the tape.

@ A configuration is depicted as a quadruple (g, wj, o, w,) where
g€ Q, w,w, € 2" and o € X; in this case, the contents of
the tape is b - wy - o - w, - b¥, and the head is positioned on
the ¢ symbol.

@ A given configuration yields a next configuration, determined
by the transition function ¢, the current state and the
character on the tape that the head points to.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Let
first(on - - 00) — { m Zio
but-first(oy - - o) = { :2 o Zz 1
last(oy -+ 0p) = { gn ZiO
but-last(cy - - o) = { :1...%_1 Z; i

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Then the next configuration of a configuration (g, wy, o, w;) is
defined iff g #£ h, in which case it is:

(p,w, o', w;) if 6(q,0) = (p,0’) where 0/ €

(p, wyo, first(w,), but-first(w,)) if 6(q,0) = (p, R)
(p, but-last(w;), last(w;),ow,) if 6(q,0) = (p, L)

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

@ A next configuration is only defined for configurations in
which the state is not the final state, h.

@ Since ¢ is a total function, there always exists a unique next
configuration for every given configuration.

@ We say that a configuration ¢; yields the configuration ¢,
denoted ¢; F ¢, iff ¢ is the next configuration of ¢;.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Program:

@ define a unification grammar Gy for every Turing machine M
such that the grammar generates the word halt if and only if
the machine accepts the empty input string:

L(Gu) = {halt} if M terminates for the empty input
MI= 0 if M does not terminate on the empty input

@ if there were a decision procedure to determine whether
w € L(G) for an arbitrary unification grammar G, then in
particular such a procedure could determine membership in
the language of Gy, simulating the Turing machine M.

@ the procedure for deciding whether w € L(G), when applied to
the problem halte L(Gp), determines whether M terminates
for the empty input, which is known to be undecidable.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

@ Feature structures will have three features: CURR,
representing the character under the head; RIGHT,
representing the tape contents to the right of the head (as a
list); and LEFT, representing the tape contents to the left of
the head, in a reversed order.

@ All the rules in the grammar are unit rules; and the only
terminal symbol is halt. Therefore, the language generated by
the grammar is necessarily either the singleton {halt} or the
empty set.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: signature

Let M = (Q,X,b,d,s, h) be a Turing machine. Define a unification
grammar Gy as follows:

@ FEATS = {CAT, LEFT, RIGHT, CURR, FIRST, REST}
@ ATOMS = ¥ U {start, elist}.
@ The start symbol is [CAT : start].

@ the only terminal symbol is halt.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines:

Two rules are defined for every Turing machine:

CAT : s
CURR: b
[cAT : start] —)
RIGHT : elist
LEFT : elist
h — halt

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every g, o such that §(q,0) = (p,0’) and o’ € L, the following
rule is defined:

CAT : q CAT : p

/

CURR: o | = |CURR: 0
RIGHT : RIGHT :
LEFT : LEFT :

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every g, o such that 6(q,0) = (p, R) we define two rules:

- CAT : p
CAT : q
CURR: b

CURR: 0O .

. — |RIGHT : elist
RIGHT : elist FIRST

.0

LEFT : 1 LEFT :
- i [REST :]
[CAT : q [CAT : p i
CURR: o CURR :

FIRST : [1 — |RIGHT : [2
RIGHT :

REST : LEFT - FIRST: O
|LEFT : i ' REST :]

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every g, 0 such that 6(q,0) = (p, L) we define two rules:

CAT : P
CAT : q
CURR: b
CURR: o FIRST
— N
RIGHT : RIGHT :
. REST :
LEFT : elist)
LEFT : elist
CAT : q CAT : P
CURR: o CURR :
RIGHT : [1 — FIRST : ©
RIGHT :
FIRST : REST :
LEFT :
REST : LEFT :

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: results

Let c1,c be configurations of a Turing machine M, and Aj, A>
be AVMs encoding these configurations, viewed as multi-AVMs of
length 1. Then c; F ¢ iff Ay = Ay in G,.

A Turing machine M halts for the empty input iff halt € L(Gp).

The universal recognition problem for unification grammars is unde-
cidable.

Shuly Wintner Unification Grammars

Off-line parsability

@ In order to ensure decidability of the recognition problem,
several constraints on grammars, commonly known as the
off-line parsability constraints (OLP), were suggested, such
that the recognition problem is decidable for OLP unification
grammars.

@ The motivation behind all OLP definitions is to rule out
grammars which license trees in which unbounded amount of
material is generated without expanding the frontier word.

@ This can happen due to two kinds of rules: e-rules, whose
bodies are empty, and unit rules, whose bodies consist of a
single element.

Shuly Wintner Unification Grammars

Off-line parsability

@ With context-free grammars the removal of rules which can
cause an unbounded growth is always possible. In particular,
one can always remove cyclic sequences of unit rules.

@ However, with unification grammars it is not trivial to
determine when a sequence of unit rules is, indeed, cyclic; and
when a rule is redundant.

Shuly Wintner Unification Grammars

Off-line parsability

@ Several definitions of off-line parsability are known.
@ Some simple proposals:

o Disallow e-rules and unit-rules
o Require a finitely ambiguous context-free skeleton

@ The state of the art: allow only unit-rules which are not
cyclicly-unifiable (i.e., cannot feed themselves).

Shuly Wintner Unification Grammars

Highly constrained unification grammars

@ Two recent results:
@ Non-reentrant grammars generate exactly the class of
context-free languages;
o One-reentrant grammars generate exactly the class of mildly
context-sensitive languages.

Shuly Wintner Unification Grammars

