
Expressivity of Unification Grammars

Shuly Wintner
Department of Computer Science

University of Haifa
Haifa, Israel

shuly@cs.haifa.ac.il

LTI CMU, May 2006

Shuly Wintner Unification Grammars

Basic notions

A signature consisting of finite, non-empty sets Feats of
features and Atoms of atoms

Attribute-value matrices (AVMs) used to depict feature
structures, which are sets of 〈feature, value〉 pairs

Reentrancy tags (or variables) are used to indicate co-indexing

Multi-AVMs are sequences of AVMs with possible reentrancies
among different members of the sequence.

A grammar is a set of production rules, each of which is a
multi-AVM, and a lexicon which associates a set of AVMs
with each word.

Shuly Wintner Unification Grammars

Basic notions

Example: Lexicon

lamb →

cat : n
num : sg
case : []

love →

cat : v

subcat : 〈

[

cat : np
case : acc

]

〉

num : pl

give →

cat : v

subcat : 〈

[

cat : np
case : acc

]

,
[

cat : np
]

〉

num : pl

Shuly Wintner Unification Grammars

Basic notions

Example: Grammar rules

[

cat : s
]

→

cat : np
num : 1

case : nom

cat : v
num : 1

subcat : elist

cat : np
num : 1

case : 2

 →

[

cat : d
num : 1

]

cat : n
num : 1

case : 2

Shuly Wintner Unification Grammars

Expressiveness of unification grammars

Just how expressive are unification grammars?

What is the class of languages generated by unification
grammars?

Shuly Wintner Unification Grammars

Trans-context-free languages

A grammar, Gabc , for the language L = {anbncn | n > 0}.

Feature structures will have two features: cat, which stands
for category, and t, which “counts” the length of sequences
of a-s, b-s and c-s.

The “category” is ap for strings of a-s, bp for b-s and cp for
c-s. The categories at, bt and ct are pre-terminal categories
of the words a, b and c, respectively.

“Counting” is done in unary base: a string of length n is
derived by an AVM (that is, an multi-AVM of length 1) whose
depth is n.

For example, the string bbb is derived by the following AVM:

[

cat : bp

t :
[

t :
[

t : end
]]

]

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: A unification grammar for the language {anbncn | n > 0}

The signature of the grammar consists in the features cat and t and
the atoms s, ap, bp, cp, at, bt, ct and end. The terminal symbols
are, of course, a, b and c. The start symbol is the left-hand side of
the first rule.

ρ1 :
[

cat : s
]

→

[

cat : ap
t : 1

] [

cat : bp
t : 1

] [

cat : cp
t : 1

]

ρ2 :

[

cat : ap

t :
[

t : 1

]

]

→
[

cat : at
]

[

cat : ap
t : 1

]

ρ3 :

[

cat : ap
t : end

]

→
[

cat : at
]

Shuly Wintner Unification Grammars

Example: (continued)

ρ4 :

[

cat : bp

t :
[

t : 1

]

]

→
[

cat : bt
]

[

cat : bp
t : 1

]

ρ5 :

[

cat : bp
t : end

]

→
[

cat : bt
]

ρ6 :

[

cat : cp
t :

[

t : 1

]

]

→
[

cat : ct
]

[

cat : cp
t : 1

]

ρ7 :

[

cat : cp
t : end

]

→
[

cat : ct
]

Shuly Wintner Unification Grammars

Example: (continued)
[

cat : at
]

→ a

[

cat : bt
]

→ b

[

cat : ct
]

→ c

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: Derivation sequence of a2b2c2

Start with a form that consists of the start symbol,

σ0 =
[

cat : s
]

.

Only one rule, ρ1, can be applied to the single element of the multi-
AVM in σ0, yielding:

σ1 =

[

cat : ap
t : 1

] [

cat : bp
t : 1

] [

cat : cp
t : 1

]

Shuly Wintner Unification Grammars

Example: (continued)

Applying ρ2 to the first element of σ1:

σ2 =
ˆ

cat : at
˜

»

cat : ap

t : 1

–

"

cat : bp

t :

h

t : 1

i

"

cat : cp

t :

h

t : 1

i

#

Choose the third element in σ2 and apply the rule ρ4:

σ3 =
ˆ

cat : at
˜

»

cat : ap

t : 1

–

ˆ

cat : bt
˜

»

cat : bp

t : 1

–

"

cat : cp

t :

h

t : 1

i

#

Apply ρ6 to the fifth element of σ3:

σ4 =
ˆ

cat : at
˜

»

cat : ap

t : 1

–

ˆ

cat : bt
˜

»

cat : bp

t : 1

–

ˆ

cat : ct
˜

»

cat :

t :

Shuly Wintner Unification Grammars

Example: (continued)

The second element of σ4 is unifiable with the heads of both ρ2 and
ρ3. We choose to apply ρ3:

σ5 =
ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜

»

cat : bp

t : end

–

ˆ

cat : ct
˜

»

cat :

t :

In the same way we can now apply ρ5 and ρ7 and obtain, eventually,

σ7 =
ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜ ˆ

cat : bt
˜ ˆ

cat : ct
˜ ˆ

cat : ct

Now, let w = aabbcc; then σ7 is a member of PTw (1, 6); in fact, it
is the only member of the preterminal set. Therefore, w ∈ L(Gabc).

Shuly Wintner Unification Grammars

Trans-context-free languages

Example: Derivation tree of a2b2c2

ˆ

cat : s
˜

»

cat : ap

t :
ˆ

t : end
˜

– »

cat : bp

t :
ˆ

t : end
˜

– »

cat : cp

t :
ˆ

t : end
˜

–

»

cat : ap

t : end

– »

cat : bp

t : end

– »

cat : cp

t : end

–

ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜ ˆ

cat : bt
˜ ˆ

cat : ct
˜ ˆ

cat : ct
˜

a a b b c c

Shuly Wintner Unification Grammars

The repetition language

Example: A unification grammar for {ww | w ∈ {a, b}+}

The signature of the grammar consists in the features cat, first

and rest and the atoms s, ap, bp, at, bt and elist. The terminal
symbols are a and b. The start symbol is the left-hand side of the
first rule.

[

cat : s
]

→

[

first : 1

rest : 2

] [

first : 1

rest : 2

]

Shuly Wintner Unification Grammars

Example: (continued)
2

6

4

first : ap

rest :

"

first : 1

rest : 2

#

3

7

5
→

ˆ

cat : at
˜

"

first : 1

rest : 2

#

2

6

4

first : bp

rest :

"

first : 1

rest : 2

#

3

7

5
→

ˆ

cat : bt
˜

"

first : 1

rest : 2

#

»

first : ap

rest : elist

–

→

ˆ

cat : at
˜

»

first : bp

rest : elist

–

→

ˆ

cat : bt
˜

ˆ

cat : at
˜

→ a

ˆ

cat : bt
˜

→ b

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Unification grammars can simulate the operation of Turing
machines.

The membership problem for unification grammars is as hard
as the halting problem.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

A (deterministic) Turing machine (Q,Σ, ♭, δ, s, h) is a tuple such
that:

Q is a finite set of states

Σ is an alphabet, not containing the symbols L, R and elist

♭ ∈ Σ is the blank symbol

s ∈ Q is the initial state

h ∈ Q is the final state

δ : (Q \ {h}) × Σ → Q × (Σ ∪ {L,R}) is a total function
specifying transitions.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

A configuration of a Turing machine consists of the state, the
contents of the tape and the position of the head on the tape.

A configuration is depicted as a quadruple (q,wl , σ,wr) where
q ∈ Q, wl ,wr ∈ Σ∗ and σ ∈ Σ; in this case, the contents of
the tape is ♭ω · wl · σ · wr · ♭

ω, and the head is positioned on
the σ symbol.

A given configuration yields a next configuration, determined
by the transition function δ, the current state and the
character on the tape that the head points to.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Let

first(σ1 · · · σn) =

{

σ1 n > 0
♭ n = 0

but-first(σ1 · · · σn) =

{

σ2 · · · σn n > 1
ǫ n ≤ 1

last(σ1 · · · σn) =

{

σn n > 0
♭ n = 0

but-last(σ1 · · · σn) =

{

σ1 · · · σn−1 n > 1
ǫ n ≤ 1

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Then the next configuration of a configuration (q,wl , σ,wr) is
defined iff q 6= h, in which case it is:

(p,wl , σ
′,wr) if δ(q, σ) = (p, σ′) where σ′ ∈ Σ

(p,wlσ, first(wr), but-first(wr)) if δ(q, σ) = (p,R)
(p, but-last(wl), last(wl), σwr) if δ(q, σ) = (p,L)

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

A next configuration is only defined for configurations in
which the state is not the final state, h.

Since δ is a total function, there always exists a unique next
configuration for every given configuration.

We say that a configuration c1 yields the configuration c2,
denoted c1 ⊢ c2, iff c2 is the next configuration of c1.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Program:

define a unification grammar GM for every Turing machine M
such that the grammar generates the word halt if and only if
the machine accepts the empty input string:

L(GM) =

{

{halt} if M terminates for the empty input
∅ if M does not terminate on the empty input

if there were a decision procedure to determine whether
w ∈ L(G) for an arbitrary unification grammar G , then in
particular such a procedure could determine membership in
the language of GM , simulating the Turing machine M.

the procedure for deciding whether w ∈ L(G), when applied to
the problem halt∈ L(GM), determines whether M terminates
for the empty input, which is known to be undecidable.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines

Feature structures will have three features: curr,
representing the character under the head; right,
representing the tape contents to the right of the head (as a
list); and left, representing the tape contents to the left of
the head, in a reversed order.

All the rules in the grammar are unit rules; and the only
terminal symbol is halt. Therefore, the language generated by
the grammar is necessarily either the singleton {halt} or the
empty set.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: signature

Let M = (Q,Σ, ♭, δ, s, h) be a Turing machine. Define a unification
grammar GM as follows:

Feats = {cat, left, right, curr, first, rest}

Atoms = Σ ∪ {start, elist}.

The start symbol is
[

cat : start
]

.

the only terminal symbol is halt.

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

Two rules are defined for every Turing machine:

[

cat : start
]

→

cat : s
curr : ♭

right : elist
left : elist

h → halt

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p, σ′) and σ′ ∈ Σ, the following
rule is defined:

cat : q
curr : σ

right : 1

left : 2

→

cat : p
curr : σ′

right : 1

left : 2

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p,R) we define two rules:

cat : q
curr : σ

right : elist
left : 1

→

cat : p
curr : ♭

right : elist

left :

[

first : σ

rest : 1

]

cat : q
curr : σ

right :

[

first : 1

rest : 2

]

left : 3

→

cat : p
curr : 1

right : 2

left :

[

first : σ

rest : 3

]

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p,L) we define two rules:

cat : q
curr : σ

right : 1

left : elist

→

cat : p
curr : ♭

right :

[

first : σ

rest : 1

]

left : elist

cat : q
curr : σ

right : 1

left :

[

first : 2

rest : 3

]

→

cat : p
curr : 2

right :

[

first : σ

rest : 1

]

left : 3

Shuly Wintner Unification Grammars

Unification grammars and Turing machines: results

Lemma

Let c1, c2 be configurations of a Turing machine M, and A1,A2

be AVMs encoding these configurations, viewed as multi-AVMs of
length 1. Then c1 ⊢ c2 iff A1 ⇒ A2 in Gm.

Theorem

A Turing machine M halts for the empty input iff halt ∈ L(GM).

Corollary

The universal recognition problem for unification grammars is unde-
cidable.

Shuly Wintner Unification Grammars

Off-line parsability

In order to ensure decidability of the recognition problem,
several constraints on grammars, commonly known as the
off-line parsability constraints (OLP), were suggested, such
that the recognition problem is decidable for OLP unification
grammars.

The motivation behind all OLP definitions is to rule out
grammars which license trees in which unbounded amount of
material is generated without expanding the frontier word.

This can happen due to two kinds of rules: ǫ-rules, whose
bodies are empty, and unit rules, whose bodies consist of a
single element.

Shuly Wintner Unification Grammars

Off-line parsability

With context-free grammars the removal of rules which can
cause an unbounded growth is always possible. In particular,
one can always remove cyclic sequences of unit rules.

However, with unification grammars it is not trivial to
determine when a sequence of unit rules is, indeed, cyclic; and
when a rule is redundant.

Shuly Wintner Unification Grammars

Off-line parsability

Several definitions of off-line parsability are known.

Some simple proposals:

Disallow ǫ-rules and unit-rules
Require a finitely ambiguous context-free skeleton

The state of the art: allow only unit-rules which are not
cyclicly-unifiable (i.e., cannot feed themselves).

Shuly Wintner Unification Grammars

Highly constrained unification grammars

Two recent results:

Non-reentrant grammars generate exactly the class of
context-free languages;
One-reentrant grammars generate exactly the class of mildly
context-sensitive languages.

Shuly Wintner Unification Grammars

