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Hiero: a new statistical translation model

Significantly improves on the phrase-based
model it generalizes (Pharaoh: Koehn et al)

Synchronous context-free grammar allows
more complex structural mappings

Learnable without syntactic information
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Human translation:
Australia is one of the few countries that have
diplomatic relations with North Korea.
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Phrase-based systems learn reorderings
within phrases well

Reordering of phrases, not so well:
classically, no lexical sensitivity

Why not use phrases to reorder phrases?
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Formalize as productions of a synchronous
CFG (aka syntax-directed translation
schema, inversion transduction grammar)

Learned without syntactic information (like
Wu, Alshawi et al; unlike Yamada and Knight)

Heavily lexicalized, as in phrase-based
models
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Plus “glue” rules:
(S = S1X2, S —= S51X))
(S —= X,S —= X))

Acts as fallback like phrase-based systems
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Per-sentence uniform distribution on initial
phrases; per-phrase, on final rules

Length limit on initial phrases (£7-15) and
final rules (=5 term+nonterm)

Limit to two nonterminals

etc.



Combine multiple features into a log-linear
model (Och and Ney, 2002)

D derivation

P(D) X H H Vi(r))\i(r) r rules in D

: vi feature functions
reD | .
A\ feature weights

Weights Ailearned by maximum-BLEU training
(Och 2003; Koehn implementation)



Phrase translation:
p(X — X; &Z— | X — one of X))
p(X — one of X| | X = X| &Z—)
Lexical weighting (Koehn):
/[p(L— | one) + p(iZ— | of)]
p(one | Z—) * p(of | Z—)



Problem: rules not actually observed

Stipulate:

All the initial phrases extracted from a
sentence get equal weight (Och)

All the rules extracted from an initial
phrase get equal weight

Then relative-frequency estimation



But glue rule S — SX has dedicated feature

Trigram language model:
p(Australia | <§>) x p(is | <S> Australia) -

Number of English words

Number of non-glue rules
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Parse Chinese side using CKY-like algorithm

Thought of as deductive inference:

[X,3,5] [X,6,7]
[X,2,7]

because X = 5 X B X
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Store English translations in hypotheses to
calculate n-gram probabilities online:

[X,3,5,North Korea] [X,6,7,diplomatic relations]

[X,2,7,have diplomatic...North Korea]

Elide all but outermost n— 1| English words
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Prune search space to improve efficiency

For all (X, i, j), throw out hypotheses with

score 3 worse than the best, or not in the
top b

Extra optimization to reduce blowup due
to language model

Limit hierarchical phrase length (<10 or |5)
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Training: FBIS (about 7/M+9M words,
Chinese-English newswire)

Language model: 200M words English
Max-BLEU training: MT Eval 2002
Test: MT Eval 2003 (also newswire)

Baseline: Pharaoh (Koehn et al), 2004
version, same training and features
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MT Eval 2003 Chinese-English, case-
insensitive BLEU-4:

Pharaoh-2004 26.76
Hiero 28.77

7.5% relative improvement, statistically
significant (bootstrapping)
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Try adding a constituent-reward feature:

without  28.77
with 28.81

Insignificant improvement
Gets healthy weight, same as phrase penalty

Bracket precision: 47% without, 76% with
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Glue rule gets higher weight than any other
rule

Types of phrases used:

Glue | 6%
Hierarchical 49%
Ordinary 35%
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Hiero’s structural mappings result in better
performance than many phrase-based
systems

Learned from parallel text without syntactic
information

Future work: improve efficiency, induction of
syntactic information
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