Synchronous Context-Free Grammars and Machine Translation by Parsing

Presented by: David Huggins-Daines

April 13, 2006

11-734 Advanced Machine Translation Seminar, Spring 2006₁

Outline

- Synchronous grammars
- Multitext Grammars
- Parsing with MTGs
- Translation by parsing
- Other applications

Synchronous Parsing

- Parsing multiple languages at once
 - Build mapping between them
 - A generalization of translation (transfer), alignment, and parsing
- Idea: implement SMT as a process of generalized parsing
 - 1-dimensional input, Ndimensional output

Synchronous Grammars

- Production rules with N parallel RHS
 - Typically some form of permutation allowed
 - Constrained to reduce complexity
 - But this may limit ability to translate
- Effective ones should account for
 - Reordering of constituents
 - Lexical dependencies
 - Discontinuities

Multitext Grammars

- Generalized form of synchronous grammar
 - Subsumes ITGs ("non-lexicalized 2-MTG(2)")
 - Generalizes to N dimensions of input and output (2 and 2 for ITGs)
- Rules generate *role templates* and *links*:

$$\begin{bmatrix} 1, 2, 3 \\ 1, 3, 2, 4 \end{bmatrix} \begin{pmatrix} \epsilon & a & b & c & \epsilon \\ w & y & x & \epsilon & z \\ t & \epsilon & u & v & \epsilon \end{pmatrix} = \begin{bmatrix} abc \\ wxyz \\ wxyz \\ vut \end{bmatrix}$$
(3)

11-734 Advanced Machine Translation Seminar, Spring 2006_5

Parsing with MTGs

- Naive parser is a generalized CKY-style chart parser
 - Cells of the chart are multidimensional productions
 - Parser applies inference rules to build on lower cells
- This has a very high complexity
 - Polynomial number of possible rules
 - Can be reduced by binarization
 - Requires special rules to deal with discontinuous constituents (*d*-strings, *d*-spans)

11-734 Advanced Machine Translation Seminar, Spring 2006_6

Parsing with MTGs

11-734 Advanced Machine Translation Seminar, Spring 20067

Translation by Parsing

- Translator has three phases
 - Scan: Read input and construct entries in the chart (based on tokens of input)
 - Load: Construct entries in the chart for possible outputs (based on the grammar)
 - **Compose**: Combine entries in the chart based on rewrite rules of the grammar
 - Satisfying Immediate Dominance and Linear Precedence (i.e. LHS must appear in RHS, and permutations must be consistent

11-734 Advanced Machine Translation Seminar, Spring 2006 $_8$

Translation by Parsing

11-734 Advanced Machine Translation Seminar, Spring 2006₉

Extensions of MTGs

- Use of N-gram language models
 - A pseudo-noisy channel model
 - Combine MTG parse with a monolingual grammar (or language model)
 - Define an N-gram LM over d-strings
 - essentially skip-N-grams
- MTGs for synchronization (training)
- MTGs for MT evaluation
 - Compare parse of reference to hypothesis

11-734 Advanced Machine Translation Seminar, Spring 200 $\ensuremath{\wp_0}$

Comparison/Conclusion

- Not much about about implementation
 - 2005 summer workshop implementation
 - Melamed's work defines abstract parsing logics
 - Implementation follows this basic structure
 - Pruning strategies used to reduce complexity
- Questions?

