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Abstract

Statistical Machine Translation (SMT) has been the dominant �avor of Machine Translation
(MT) over the last decade. Traditional SMT systems have a pipeline structure in which di�erent
kinds of Machine Learning models are employed in di�erent stages. For the translation modeling,
most state of the art systems use hybrid models that combine a handful of generative models in
a discriminative framework. The generative models are estimated over large amounts of parallel
data and are used as features in a log-linear model which scales them to get good translation
performance. Unfortunately, these models don't scale well with the number of features. As a
result, the main advantage of discriminative models, the use of millions of arbitrary features
capturing �ne grained properties of data, is given up. One approach to solve this problem is n-
best re-ranking on top of a base model, that has proved successful in Natural Language Parsing.
Other option is to have purely discriminative translation models that can train directly on the
parallel bilingual data and employ any arbitrary feature. This survey primarily focuses on the
second approach but provides pointers to the recent work on both re-ranking and more traditional
hybrid models. We cover the purely discriminative models described in literature and outline the
major obstacles that must be overcome before these models can perform comparable and better
than the current state of the art systems.

1 Introduction

SMT systems are the current state of the art in the area of Machine Translation. Starting with the
IBM translation models 1-5 [Brown et al., 1990], the translation models in these systems have become
increasingly powerful and well motivated. The parameters of these models are learned generatively,
either with an iterative algorithm like EM or with simple surface heuristics. These models are then
combined along with some other features in a log-linear framework which is a generalization of the
Noisy Channel Model and allows for the inclusion of arbitrary features. The log-linear model scales
these base models to get good translation performance on unseen data. The log-linear model is trained
on a small amount of held-out data using Minimum Error Rate Training (MERT)[Och, 2003] which
tries to directly maximize the evaluation metric of one's choice. The number of features in this setup
is around 10-15 and it is di�cult to scale up MERT to a large number of features.

On the other hand, discriminative models with big feature sets have become increasingly popular
for NLP applications [Collins, 2000][McDonald et al., 2005]. These models allow the use of million
of arbitrary, possibly overlapping, features and can be e�ciently trained if the features are suitably
localized. This provides a way to include any domain speci�c knowledge one might have without
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worrying about the dependencies between the features. In addition, various kinds of regularization
provide inherent feature selection mechanism that removes the need for large scale feature engineering
and leads to sparser and manageable models.

As the MT systems get better, the errors committed by them become more subtle. So it is natural
to hope that larger feature sets would provide the �exibility to model more �ne grained aspect of
translation process. There were earlier attempts in [Och et al., 2004] and [Shen et al., 2004] to do
n-best re-ranking over a baseline systems output using a large feature set. More recently, work has
been done on large scale discriminative training of translation models directly from bilingual parallel
data (Liang et al. 2006, Watanabe et al. 2007, Ittycheriah and Roukos 2007, Arun and Koehn 2007).
These systems have shown modest improvments over the more popular MERT trained hybrid models.
Given the amount of data on which the modern MT systems are trained, it is a signi�cant challenge
to scale up the discriminative training but there are de�nite advantages in discriminative approach
which would be good to have in SMT system building toolbox.

The rest of the report is organized as follows. In section 2 and 3, we brie�y review some discrimina-
tive methods and translation models respectively. Section 4 presents the work done on the large scale
discriminative training which is the main focus of this report. A quick overview and some pointers to
the recent work on the currently used hybrid models and re-ranking approaches follows in sections 5
and 6. We end with a discussion of the main obstacles that are faced by the discriminative methods
in MT and future directions in section 7.

2 Discriminative Models and Training Methods

The distinction between the generative and discriminative methods is not completely black and white,
both in theory and practice and sometimes people may di�er in what they call discriminative. Most
of the times, the so called purely discriminative models will include features derived from simple
generative models.

For the purpose of this report, we will classify models of the join probability of the input and output
i.e. p(y, x) and associated training methods as generative while all the models that treat input as given
and hence do not model it, will be called discriminative. Note that we have said nothing about what
the discriminative methods will model and how they will model it yet. The common theme binding all
the discriminative methods is that they do not model the probability density of the input and treat it
as given. So according to this de�nition, a HMM is a generative model since it models p(yn

1 , xm
1 ). On

the other hand, a CRF would be a discriminative model since it models p(yn
1 |xm

1 ).
Discriminative methods primarily come in two �avors.

2.1 Likelihood Based

Likelihood based discriminative methods model the conditional density of the output given the input.
Most popular models of this kind are conditional log linear models. Let x be the input and y be the
output. if Φ is the feature vector and w is the corresponding weight vector, a conditional log linear
model takes the following form:

p(y|xi) =
ew·Φ(y,xi)∑

yj∈G(xi)
ew·Φ(yj ,xi)

The parameters of the log-linear model can be estimated using maximum likelihood estimation.

2



The likelihood function of log-linear models as de�ned above, is convex and so any gradient based
method and be used to maximize the likelihood.

However, maximum likelihood is not the only method for estimating parameters. In machine trans-
lation, the �nal performance of the model is measured by some evaluation metric like BLEU[Papineni
et al., 2001] and not the likelihood of the output. There is no reason to believe that the parameters
tuned to maximize the likelihood of the data will also lead to optimal BLEU score. One option is
to optimize parameters to maximize the BLEU score of the training data. However the error surface
de�ned by BLEU will be non-convex in general and gradient based methods are not guaranteed to
�nd the global optimal solution. Additionally, the sum in the denominator is over all the possible
output sentences which is a exponentially large space. MERT [Och, 2003] is one way of optimizing the
parameters so that the BLEU score of the training data is maximized. Section 5.1 on page 12 provides
pointers to other loss functions and training methods useful for MT.

The sum in denominator is called partition function and ranges over all possible values of t. Com-
puting the partition function is not necessary while decoding since it is constant for all ts but it is
required at the time of training. The main challenge in the application of log-linear models is to be
able to compute the partition function e�ciently. The problem is worse in case of NLP where the
sum is over structures. However, if the features are local, the sum can be obtained using well known
dynamic programming techniques 1. As a result, the features are often restricted to be local so that
the partition function and the feature expectations can be e�ciently computed 2.

2.2 Margin Based

Our primary aim in discriminative training is to �nd a model that performs well on the unseen data.
One way of achieving is to let go the underlying density modeling in the likelihood based methods and
directly look for a weight vector w such that for all the training examples

yi = argmaxy∈G(x)w.Φ(xi, y)

The basic idea is to �nd a hyperplane that separates the correct output from the others. SVM-
struct, MIRA and Perceptron are some of the algorithms in this category. Perceptron and MIRA are
examples of Online algorithms, a class of algorithms that look at one training sample at a time and
update their weight vectors accordingly.

2.2.1 Perceptron

Perceptron is a simple and easy to train online learning algorithm. The Perceptron was extend for
structured classi�cation by [Collins, 2002] and has proved to be e�ective for a range of NLP tasks.
In each iteration, it decodes the training examples one by one using the current weight vector and
updates the weight vector with the di�erence in the feature vector of the current best and the gold
standard. The �nal parameters are obtained by averaging the parameters across all iterations to avoid
over-�tting [Collins, 2002] .

2.2.2 MIRA

MIRA [Crammer and Singer, 2001] uses the concept of a loss function that is used to scale the margin.
A loss function tells us how much penalty we incur when we predict something wrong. A common

1Forward-Backward algorithm for sequences and Inside-Outside for tree structures
2Another option is to approximate the space of all the outputs with the n-best list
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example is a zero one loss function where you score 1 if the output is correct and 0 otherwise.
The optimization problem solved by MIRA is the following. Let xt be the tth training example, wi

the weight vector in the ith iteration, Φ(xt, y) the feature vector representation of xt, G(xt) the set of
all the possible outputs corresponding to xt and L(y, y

′
) a given loss function, then

min ||wi+1 −wi||
s.t. wi+1.(Φ(xt, y)− Φ(xt, y

′
)) ≥ L(y, y

′
)

y′ ∈ G(xt)

The idea here is to create a margin between the correct output and an incorrect output that is at
least as big as the loss between them. When the number of possible output is huge, so is the number
of constraints and solving this optimization problem would be hard. As an alternative, we can use the
k-best version [McDonald et al., 2005] where the constraints are formed with only the k-best outputs.
Intuitively the k-best outputs will be closer to the correct output and so satisfying the corresponding
constraints would be more important. The k-best formulation would look like

min ||wi+1 −wi||
s.t. wi+1.(Φ(xt, y)− Φ(xt, y

′
)) ≥ L(y, y

′
)

y′ ∈ bestk(xt;wi)

Similar to Perceptron, the common practice is to use the average of the parameter vectors from all
iterations to avoid over-�tting.

2.3 Other Algorithms

There are a lot of other discriminative learning algorithms and models available like SVM-struct and
decisions trees. Not many of them have been applied to the problem of full scale machine translation
yet. In this survey, [Wellington et al., 2006] use boosted decision trees on the MT sub-tasks of word
and tree transduction (See section 4.2.2 on page 10).

3 Translation Models

In Statistical Machine Translation, given some amount of parallel text between source and target
language, the aim is to learn a translation model that can translate unseen source language data into
target language. For the purpose of this survey, we assume basic familiarity with the SMTmethodology.
[Lopez, 2007] provides a comprehensive survey of Statistical Machine Translation.

Although the translation models translate one sentence at a time, most of them record the bi-lingual
translation equivalence in form of smaller pieces in order to get better generalization on unseen data.
Phrase based models use phrases-pairs, IBM models use word-phrase pairs and Hiero style systems use
phrase-pairs with variables. We call any such elementary piece a Basic Translation Unit (BTU).

Given a set of BTUs, a derivation under a translation model de�nes the steps involved in construct-
ing the full sentence pair from individual BTUs. Under most translation models, there are more than
one ways of constructing a given sentence-pair. This is called spurious ambiguity. If the underlying
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model has a probabilistic interpretation, we can handle this ambiguity by summing over all the deriva-
tions. When the model doesn't have a probabilistic interpretation like in margin based discriminative
models, it is a more tricky issue. We will return to this issue in section 4.1.4 on page 8.

Derivations are also important because they suggest a natural parametrization of translation mod-
els. For example, in a SCFG based translation model, one parameter per SCFG rule would be a natural
parametrization of the model ( It is not a requirement to parametrize the model along this structure
but it would seem to be a natural choice).

We now brie�y describe the phrase based and hierarchical phrase based translation models that
are used in most of the work that we describe in section 4.

3.1 Phrase Based SMT (PBSMT)

Phrase based SMT models, consist of 3 steps. First the input sentence is segmented into phrases. A
phrase in this model is any contiguous span of source sentence and has no linguistic meaning attached.
Now each source phrase is translated into target language phrase and �nally the target language
phrases are reordered to generate the �nal output.

Bi-lingual phrase pairs are the basic unit of translation in this model. To extract them from the
parallel data, one option is to use EM to directly estimate a phrasal alignment between two sentences.
However, the total search space of phrasal alignments is huge. So as an alternative, phrasal alignments
can be read o� from the word alignments instead. Word alignments can be generated by any of
the various word alignment methods available. Finally all the phrase pairs consistent with the word
alignment are extracted. To keep the number of extracted pairs manageable, only phrases of up to a
max-length are extracted. In practice, this heuristic method of phrase extraction has been shown to
work better than the more principled EM based alignment and extraction.

In the current phrase based systems, every phrase pair is assigned 4 features, p(s|t), p(t|s),
p(slex|tlex), p(tlex|slex) where p(s|t) and p(t|s) are relative frequency estimates of phrase-pair proba-
bility in two directions and p(slex|tlex) and p(tlex|slex) are lexically weighed translation probabilities of
the phrase pair in two directions. A typical phrase based decoder uses these 4 features in combination
with one or more language model scores, distortion penalty, phrase and word penalties in a log-linear
combination to search for the best hypothesis. For more details, please refer [Koehn et al., 2003].

3.2 Hierarchical Phrase Based SMT

In vanilla PBSMT, the phrases can only have lexical items and must be contiguous. As a result,
many kinds of language divergences seen in real translation data can not be modeled. Additionally,
the reordering models used in these systems are distance based and not very strong. Hierarchical
phrase based model proposed by [Chiang, 2005] extends the phrase based models by allowing phrases
to contain variables that can be replaced with other phrases. This can be alternatively seen as a
single variable SCFG induced from translation data. Features used in this model are similar to the
vanilla phrase based model. Decoding in this model is equivelent to parsing the source side with the
induced grammar while genarating the target sentence alongside. For reasons of e�ciency, phrases
can only have upto 2 variables in them which should not be contiguos. With this restriction, the
induced grammar is in Chomsky Normal Form and can be e�ciently parsed using an extension of
CKY algorithm.

For the exact method of extraction and details about decoding, please refer [Chiang, 2007].
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4 Large Scale Discriminative Models for MT

In this section, we �rst describe the issues that a discriminative SMT system must address. We then
present some speci�c examples. Performance of all the systems discussed in this sections has been
summarized in the Table 6 on page 18.

4.1 Issues in a large scale discriminative SMT system

In order to use discriminative techniques in a machine translation system, several issues need to be
addressed. The �rst question to ask would be if all kinds of translation models can bene�t equally
from discriminative techniques. No such comparative results are available in the literature as of now.
Most of the work in the area has used one of the two models described in section 3 on page 4, with
some interesting variations [Ittycheriah and Roukos, 2007] [Wellington et al., 2006].

For any translation model, the process of obtaining the repository of BTUs is the same as hybrid
SMT systems. There has not been an attempt to engineer a single, purely discriminative system from
the parallel data itself. Both large scale discriminative and hybrid systems follow a two layer approach
where �rst a word alignment model is used to align the data and then basic translation units are
extracted from it3.

4.1.1 Features

The main attraction of using a discriminative approach is the large number of arbitrary features that
can be used in the model. Features can be overlapping and can be either binary or real valued. They
can encode any information present in the full input and output sequences and also the associated
derivations. However the training and decoding become increasingly expensive as the features become
non-local4. The primary criteria for choosing features is the balance between usefulness of features
and e�ciency of training/decoding.

The only large scale experimentation on a variety of features for machine translation reported in
the literature is [Och et al., 2004] which was done in a re-ranking setting. The features tried varied
from lexical features to various syntax based translation models proposed in the literature till that
time. The results were pretty disappointing with no feature other than IBM model 1 scores showing
signi�cant improvement over baseline. The authors list many possible reasons for this result including
the problem in getting reliable annotations like POS tags, parse trees on the MT output which is not
well formed.

Later researchers have tried a more vanilla set of features but with slightly more success. A natural
feature to include in these systems is the one marking the presence of a particular BTU in building the
source-target pair [Blunsom et al., 2008] [Arun and Koehn, 2007]. One such feature �res corresponding
to each of the millions of BTUs available. We can also look at the target language bi-grams that capture
the �uency of the output. Source side bi-grams can help in encoding re-ordering patterns.

If one preserves the translation correspondences inside a BTU, useful features that tie across the
BTUs can be used. An example would be word pair features similar to phrase pair features. [Liang
et al., 2006] used a alignment constellation feature that marks the presence of particular alignment
pattern within a phrase pair. The interesting �nding there was that the long monotonic patterns
received the lowest weights while word inversion patterns were at the top. This suggests that the in
case of monotonic patterns, many smaller phrase pairs are preferred over one long one.

3[May and Knight, 2007], also see section 7.1.2 on page 13
4Since the input is treated as given, features can draw on the full input sequence without being non-local
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Another source of features for discriminative models are the base generative models. Experience in
the word alignment task has been that state of the art results are achieved when using the generative
model predictions as features [Taskar et al., 2005]. Experiments in [Arun and Koehn, 2007] and
[Blunsom et al., 2008] suggest a similar case for SMT also. With only the discriminative features, they
fail to beat the hybrid MERT baseline. [Liang et al., 2006] and [Watanabe et al., 2007] on the other
hand, use the translation model scores and language model scores from generative models as features
and report improvements over the MERT baseline.

4.1.2 Training methods

There are a host of discriminative training methods available, some of them described in section 2.
There is no conclusive evidence about which method works best for MT. The choice of the training
method is primarily driven by the kind of features in use and the e�ciency of the whole process since
discriminative training is computationally expensive.

Among the margin based methods, [Liang et al., 2006] used the basic Perceptron algorithm along
with a local update strategy while [Watanabe et al., 2007] employed MIRA along with a improved
version of local update strategy, described in section 4.1.4 on the following page. [Arun and Koehn,
2007] present a comparison of Perceptron and MIRA and �nd no signi�cant di�erences in performance.

The learning algorithm of [Tillmann and Zhang, 2006] is also inspired by margin based methods.
It tries to maximize a cost sensitive margin between a set of good translations and other alternatives.
The set of alternatives in build up by including the 1-best output of the decoder in each iteration.

[Blunsom et al., 2008] model p(t|s) directly using a global conditional log linear model in a Hiero
Style system. There is one feature per rule in the model. They estimate the model using MAP
estimation which maximizes the likelihood of the training data penalized with a prior. The prior is a
zero mean Gaussian. They use a packed forest representation of all the derivations produced by the
model and compute the partition function and feature expectations using inside-outside algorithm.

4.1.3 Loss functions

Some discriminative learning algorithms e.g. MIRA require a loss function as part of their update
rule (Section 2.2.2 on page 3). Since the �nal translation performance is often measured using BLEU
metric, most of the work on discriminative training of MT models uses a loss function based on it.
Originally BLEU is computed by aggregating the statistics over the whole corpus but loss function
needs to be computed at the sentence level. An alternative is the smoothed BLEU or sBLEU, a
segment level modi�cation of the original metric.

[Arun and Koehn, 2007] use the di�erence in sBLEU scores of the reference and the hypothesis.
They also experimented with weighing the di�erence with the absolute sBLUE score of the reference.
This is prompted by the fact that some of the reference translations are not gold standard translations
but surrogates obtained from a n-best list5. As expected , the weighted loss function performs better.

[Tillmann and Zhang, 2006] use the following function of sBLEU scores and the translation model
scores where b and s are the BLEU score and translation model scores of the reference and b' and s'
of the hypothesis.

φ(s, b; s
′
, b

′
) = (b− b

′
)(1− (s− s

′
))2

This is a convex function which can be optimized using standard gradient based techniques.

5See section 4.1.4 on the following page
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The main problem in using sBLEU as a loss function is that the brevity penalty of the original
metrics is computed at a sentence level. This can prove to be too strict as evidenced by [Arun and
Koehn, 2007] who noted that the discriminatively trained model was producing consistently smaller
hypothesis. In [Watanabe et al., 2007], authors use a approximate BLEU formulation which avoids
this problem by still computing BLEU at the sentence set level. The basic idea is to compute the
BLEU score at the corpus level once with all the original references and once with one of the references
replaced with the corresponding hypothesis. The di�erence in the scores is the loss accrued by the
hypothesis at the corpus level.

4.1.4 Update strategies

Discriminative learning methods learn the model by updating towards a gold standard. In machine
translation, the target side of parallel corpus is the gold standard. However in the real world MT
systems, there are two immediate issues.

• The coverage of even large scale MT systems is not 100% on the training data because of the
restrictions imposed on the underlying extraction processes. For many source sentences, the
speci�ed gold standard will not be present in the output space of the model. Updating towards
a unreachable output is not desirable.

If the amount of unreachable training data is small, we can simply discard it but experience shows
that this percentage can be very high 6. The other option is to compute a surrogate reference that
is reachable by the model and can be used in place of gold standard. [Tillmann and Zhang, 2006]
use a modi�ed decoder to generate the highest BLEU scoring hypothesis reachable by the model for
every source sentence prior to training and use it as gold standard. These are called the MAX-BLEU
references. On the other hand, [Liang et al., 2006] choose the surrogate reference as the highest BLEU
scoring hypothesis from the n-best list generated by the decoder at each iteration of training. This is
called a local update strategy. Improving on it slightly, [Watanabe et al., 2007] and [Arun and Koehn,
2007] keep around the surrogate references used in previous iterations and merge them with the current
n-best list before choosing the new surrogate reference. [Arun and Koehn, 2007] present a comparison
of two strategies.

• When the reference translation is reachable by the model, there are often more than one deriva-
tions. Some of these derivations are good and we want to reward them while others might be
bad and we want to penalize them. However since the training data is not annotated with the
gold standard derivations, we need some strategy to handle the ambiguity.

A compromise solution is to choose a derivation that is best according to some metric. [Arun and
Koehn, 2007] use the best scoring derivation under the current model while [Liang et al., 2006][Watan-
abe et al., 2007] use the structure that comes with the highest BLEU scoring hypothesis from the
current n-best list. The principled way of handling this problem would be to marginalize out the
derivation by summing over all the possible derivations. However that might be too expensive in some
models.

In [Blunsom et al., 2008], authors use a approximate beam search and sum over all the derivations
that end up in the beam. They compare it against the compromise solution of choosing the derivation
with maximum number of rules ( based on the intuition that the smaller rules should be preferred in
the system) and show signi�cant improvements (Table 1) .

666% in [Liang et al., 2006] and 24% in [Blunsom et al., 2008]
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System BLEU Score

Discriminative max derivation 25.78
Hiero with reduced features 26.48

Discriminative sum derivations 27.72

Table 1: E�ect of summing over all the derivations vs choosing one [Blunsom et al., 2008]

[Ittycheriah and Roukos, 2007] overcome this problem by �rst restricting the space of allowed basic
translation units to 1-n phrases and then using a word alignment model to get the gold standard
alignments between the source and the target.

• Every source sentence can have multiple correct translations. So even if the output of the system
might di�er from the gold standard, it may not be a bad translation. We would like to avoid
penalizing these sentences.

Unfortunately, there is no straight forward way of achieving this. A partial mitigation can be achieved
by using local update strategy even in those cases when the gold standard is reachable. [Liang et al.,
2006] compare the aggressive, local and hybrid updating strategies and show that the local strategy
works best.

4.2 Global vs Local Models

All the models that we have presented till now, tackle the translation problem globally i.e. all the deci-
sions in the translation of one input sentence are taken jointly. A di�erent approach involves breaking
down the global decision process into a series of local decisions. This involves making independence
assumptions and may not lead to globally optimal solutions. On the other hand, training and decoding
in these models are much simpli�ed. [Ittycheriah and Roukos, 2007] and [Wellington et al., 2006] are
two examples of this approach.

4.2.1 Local conditional log-linear models

In [Ittycheriah and Roukos, 2007], the process of phrase based translation is decomposed into following
steps:

• Begin at the left edge of source and consider a window of prede�ned size.

• Choose a jump size j and jump that many places in the source sentence (-5 < j < 5)

• Produce the target side corresponding to this source word and mark it as covered.

• Iterate till all source words are covered.

So the global models factors down as following:

p(T, j|S) =
∏

i

p(ti, j|si)

Each individual p(ti,j|si) is modeled as a mixture of language model score and a translation model
score where the translation model is a conditional log linear models of the form:
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Feature Name Feature Variables

SRC_LEFT source left, source word, target
word

SRC_RIGHT source right, source word, target
word

SRC_TGT_LEFT source left, target left, source
word, target word

SRC_TGT_LEFT_2 source left, target left, target left
2, source word, target word

Table 2: Lexical Context Features Used in [Ittycheriah and Roukos, 2007]

p(ti, j|si) =
p0(t, j|s)

Z
exp

∑
i

λiφi(t, j, s)

p0(t, j|s) is a prior distribution set to the normalized phrase count in this case. The parameters are
estimated using Improved Iterative Scaling (IIS) [Della Pietra et al., 1997]. The features in the model
include word pair features, lexical context features (Table 2), Arabic segmentation features formed by
grouping every morpheme of the source word with the target side, POS features and coverage features
that check if the surrounding source words have been already translated.

Compared to a phrase based baseline, the system performance was comparable or better depending
on the test set. This is despite the fact that the discriminative system had a much more restricted
set of BTU available as compared to phrase based system. Most of the gains come from the lexical
coverage features while segmentation features also provided a little boost. Gains achieved from POS
features and coverage features were not signi�cant.

4.2.2 Word and tree transduction using multi-class classi�ers

[Wellington et al., 2006] present another model along the similar lines. They do not address the end to
end translation problem but experiment with the sub-tasks of word transduction and tree transduction.
Tree transduction is the problem of predicting target tree given the source tree. They decompose this
problem into a set of multiclass classi�cation problems. One type of problems predict the word level
translations of source words while others predict the internal nodes of the target tree given the source
tree. A l1 regularized boosted decision tree is trained for each of these problems.

They present an interesting point about l1 vs l2 regularization. On the word transduction task,
the model trained with l2 regularization was 2 orders of magnitude bigger than the model trained
with l1 regularization. The di�erence in performance was small. However due to the large size, it was
not possible to train the model with l2 regularization on the large amount of training data and a l1
regularized model trained on more data signi�cantly out-performes the original l2 regularized model
(Table 3). They conclude that for the problems of the scale of MT, we need regularization schemes
that lead to sparse solutions and hence l1 regularization should be preferred.
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Regularization Performance
(% accuracy)

Size (# of
non-zero
features)

l1(10k) 54.13 41.7k
l2(10k) 54.53 2.51M
l1(100k) 62.42 703k

Table 3: E�ect of di�erent regularizations on the task of word transduction [Wellington et al., 2006]

System Filtering Technique Number of
Sentences in
Training Data

Arun and Koehn [2007] - 21k
Liang et al. [2006] Length 5-15 67k

Ittycheriah and Roukos [2007] For every n-gram that
occurs in test set, select
the �rst 20 sentences

containing it

197k/267k/279k

Tillmann and Zhang [2006] Keep sentences from the
training data that have
at-least one n-gram from

test data

230k

Watanabe et al. [2007] - 1k
Blunsom et al. [2008] Length 5-15 130k

Table 4: Data Filtering applied to training data

4.3 Scaling up the discriminative training

The discriminative training is computationally expensive. Hence scaling it up to large amounts of data
remains a big challenge. An average large scale SMT system is trained on more than 1 million sentence
pairs 7. On the other hand the systems described above were trained on far less data ( 67k [Liang
et al., 2006], 21k [Arun and Koehn, 2007], 280k [Ittycheriah and Roukos, 2007], 130k [Blunsom et al.,
2008]). Even for training on these small amounts of data, these systems need to use various heuristics.
Table 4 shows a quick summary of the data �ltering employed in di�erent systems.

In the word alignment, the experience has been that as the amount of training data increases,
the gains shown by more sophisticated models over the simpler models tend to disappear. Since the
discriminative models still have to show signi�cant improvement on state of the art systems, it is hard
to predict what the results will be with large amounts of data.

5 Hybrid Models

Although showing promising trends, none of the purely discriminative methods have been scaled up
for use in a large scale MT systems yet. So while these methods catch up, it is still important to see

7In WMT2008 translation shared task, the training data was about 1.2 million sentences
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how the hybrid methods currently in use can be improved. There are two primary directions for such
investigations, a better estimation technique and a more e�ective set of features. [Och et al., 2004]
explored a wide variety of features most of which failed to give any signi�cant improvement. [Nguyen
et al., 2007] discuss the use of non-parametric features in SMT.

5.1 Improving the estimation

Currently, MERT is the standard procedure for optimizing the parameters of the log-linear combination
of generative models while BLEU is the most frequently used criteria. In [Zens et al., 2007], authors
evaluate many di�erent training criteria including maximum likelihood at sentence and n-gram level
and BLEU computed at sentence and n-gram level. They optimized the parameters using the Downhill
Simplex algorithm. The parameters tuned to optimize n-gram level BLEU gave the best results on the
two unseen test sets.

[Smith and Eisner, 2006] present Minimum Risk Annealing to estimate the parameters of a log-
linear model against a arbitrary loss function. The idea is to minimize the expected loss instead
of the 1-best loss. The expected loss is computed under a probability distribution which starts out
�at over the hypothesis space but is concentrated more and more on the 1-best hypothesis as the
training progresses. They compare their method against MERT and show signi�cant and consistent
improvements in BLEU score.

6 Discriminative Re-ranking

Another popular way of taking advantage of discriminative methods is to use them in a re-ranking
setting. First of all, a n-best list is generated by a baseline system which uses a limited set of features
that allow for e�cient training and decoding. Then a discriminative re-ranker is used to re-rank the
n-best list by making use of a large number of global features that capture long distance dependencies
and other non-local features. Discriminative re-ranking has been quite successful in Natural Language
Parsing.

[Shen et al., 2004] present 2 algorithms for MT re-ranking. The �rst is a splitting algorithm that
tries to �nd a hyperplane separating the top r translations from the bottom k translations. The
second algorithm is ordinal regression with uneven margins, proposed in [Shen and Joshi, 2004]. The
feature used were derived from the set used in [Och et al., 2004]. The results showed no signi�cant
improvements over the MERT baseline.

7 Future Directions

The use of large scale discriminative models in MT has started only recently. Their performance levels
are still behind hybrid systems8 and only slightly better when using generative models as features.
There are a number of research issues that need satisfactory answers before these models can become
a serious challenge to current models.

Discriminative models have been used in various NLP tasks with reasonable success in the past.
However, MT presents some unique challenges which broadly fall into two categories.

8Even when trained on same amount of data
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7.1 E�ciency and scaling issues

It is well known that discriminative training methods are computationally intensive. This is because
during training, they need to decode the entire training set once per training iteration. One of the
reasons for the popularity of the Perceptron like algorithms is that they only require computation of
1-best hypothesis in each iteration. However, it is possible to generate k-best lists with very small
cost on top of 1-best [Huang and Chiang, 2005]. This means that MIRA style algorithms that can
exploit the top k outputs and make more informed decisions can be used at almost the same cost as
Perceptron style algorithms9. Going a step further, one of the main reasons of the failure of n-best
re-ranking to give signi�cant gains is because the n-best lists often do not have enough variety among
the candidates. Recently, state of the art results were obtained for parsing by applying re-ranking
directly to a packed forest representation [Huang, 2008]. The same approach may give improvements
for MT also.

7.1.1 Syntax vs Phrase based models

Another possible direction of investigation would be to see if some translation models are more suited for
discriminative approaches than others. It is known that for SCFG and other syntax based translation
models, decoding is polynomial in sentence length while for phrase based models, it is NP-Hard [Lopez,
2007]. In practice, phrase based models are usually faster because of the arbitrary limits imposed on the
phrase sizes and reordering windows. It would be interesting to see if this polynomial time guarantee
can be exploited to make discriminative training e�cient and thus scale up to larger corpora.

7.1.2 Discriminative BTU extraction

A similar direction is to explore more restricted versions of the current translation models. [Ittycheriah
and Roukos, 2007] restricted the underlying phrase based model to only use 1-n phrases but they did
not directly tie up the decoding process with the phrase extraction. On the other hand, [Liang
et al., 2006] explored alignment contellation features that give you some information about which
alignment patterns are useful. A natural next step would be to tie the phrase extraction and translation
model training more tightly together10. The feature selection that comes for free with some of the
discriminative techniques can be useful here.

7.2 Problems with gold standard data

This is the issue we touched upon in section 4.1.4 on page 8. In many NLP tasks, there is a �xed gold
standard known apriori and it is easy to build models such that the gold standard is always guaranteed
to be reachable. Both these luxuries go away in MT and as we saw, current systems have explored
some ways of handling these issues.

One interesting direction for exploration would be, given a set of gold standard sentences, how can
we create a enlarged space of acceptable translations and how can we e�ciently compute the similarity
between this set and our candidate translation. In some sense, BLEU does the same thing by projecting
all the reference sentences into a common space of n-grams against which the candidates are evaluated.

9We still need to solve the optimization problem at each step but the training times are currently dominated by the
time spent in decoding.

10Similar experiments in generative models do not give better performance [DeNero et al., 2006][May and Knight,
2007]
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However this is a low precision and low recall space ( in terms of the acceptable translations of the
source sentence) . [Pang et al., 2003] provide another example in the context of paraphrase generation
but it is not known how e�cient it would be to evaluate candidate hypothesis against such a space.

8 Conclusion

In this survey, we covered some recent work in employing discriminative modeling and training algo-
rithms to SMT with large number of features. The experience from other tasks in NLP and the initial
results from the limited data scenario look promising. However signi�cant issues regarding scaling
up of the techniques to large amounts of training data remain which must be addressed before that
promise can be realized. The increasing popularity of syntax based models in which decoding in more
manageable, can help with this problem.

Application of these techniques to SMT also presents some unique challenges such as the lack of one
�xed gold standard. Future work can lead to development of newer discriminative techniques suitable
for these tasks which will be useful for other �elds as well.
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